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Abstract

We study a bilevel economic system, which we
refer to as aMarkov exchange economy(MEE),
from the point of view of multi-agent reinforce-
ment learning (MARL). An MEE involves a cen-
tral planner and a group of self-interested agents.
The goal of the agents is to form a Competitive
Equilibrium (CE), where each agent myopically
maximizes her own utility at each step. The goal
of the central planner is to steer the system so as to
maximize social welfare, which is de�ned as the
sum of the utilities of all agents. Working in a set-
ting in which the utility function and the system
dynamics are both unknown, we propose to �nd
the socially optimal policy and the CE from data
via both online and of�ine variants of MARL.
Concretely, we �rst devise a novel suboptimal-
ity metric speci�cally tailored to MEE, such that
minimizing such a metric certi�es globally opti-
mal policies for both the planner and the agents.
Second, in the online setting, we propose an al-
gorithm, dubbed asMOLM, which combines the
optimism principle for exploration with subgame
CE seeking. Our algorithm can readily incorpo-
rate general function approximation tools for han-
dling large state spaces and achieves a sublinear
regret. Finally, we adapt the algorithm to an of-
�ine setting based on the pessimism principle and
establish an upper bound on the suboptimality.
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1. Introduction

Many real-world economic systems involve interactions
between a central planner and a group of self-interested
agents, where the planner aims to �nd a policy that steers
the agents to some ideal equilibrium that maximizes social
welfare. One widely studied instance is optimal tax policy
design (Mirrlees, 1976; Mankiw et al., 2009), where the tax
policy-maker aims at balancing equality and productivity
for tax-payers in the society. Less studied in the previous
literature, the design of learning mechanisms for a bilevel
economic system remains challenging due to the instability
and co-adaptation between agents and the planner, espe-
cially for sequential decision-making problems. Despite the
progress shown by several works (Kutschinski et al., 2003;
Mannion et al., 2016; Zheng et al., 2020; 2021; Lussange
et al., 2021) that apply multi-agent reinforcement learning
(MARL) to instances of economic systems, it is still an
open theoretical challenge to design ef�cient mechanisms
for bilevel economic systems with provable guarantees.

Our approach brings MARL methods together with the clas-
sic model exchange economy (EE). The EE framework has
a wide range of applications, including ride-sharing, op-
erations management, crowdsourcing, wireless networks,
and compute clusters (Cohen & Cyert, 1965; Hussain et al.,
2013; Dissanayake et al., 2015; Rauch & Schleicher, 2015).
In an exchange economy, a set of rational agents with indi-
vidual initial endowments allocate and exchange a �nite set
of valuable resources based on a common price system. The
target of EE is to achieve Competitive Equilibrium (CE),
where all agents maximize their own utility under their bud-
get constraint. Adapted from EE, our proposed framework,
theMarkov exchange economy(MEE), comprises a central
planner, multiple agents, and contextual states which follow
a Markov Decision Process (MDP). In MEE, the agents
follow the same procedure as in EE conditioned on a contex-
tual state. The central planner's action affects the evolution
of the endowments of the agents as well as the contextual
states. The goal of each agent is to myopically maximize
its own utility at each step, which leads to a Competitive
Equilibrium (CE) as the agents' subproblem. The goal of
the central planner is to steer the system so as to achieve
social welfare maximization (SWM), where social welfare
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is de�ned as the sum of the utilities of all agents over the
entire episode. Instead of adding restrictive assumptions
that utility functions are known as in many prior works on
EE (Tiwari et al., 2009; Hindman et al., 2011; Dissanayake
et al., 2015), we aim to solve MEEs when learning both the
unknown utility functions and transitions. In reality, it is dif-
�cult to collect an exact utility function through automated
systems (Hindman et al., 2011; Delimitrou & Kozyrakis,
2013; Venkataraman et al., 2016; Rzadca et al., 2020; Guo
et al., 2021) and assuming the full knowledge of transition
probability is also unrealistic, which makes the problem still
more challenging.

Taking one speci�c example for illustration, we consider a
developer community. In this community, there are multiple
developers who wish to myopically maximize their utility
and an administrator who plans to maximize the sum of
these developers' utilities. Each developer has her own en-
dowments, e.g., computing resources, memory, bandwidth,
and programmer time, for exchange within the community
that are available for a �nite number of timesteps. At each
timestep, developers report their utilities based on their
current allocations and contextual states (electricity fee or
available time for device usage) to the administrator through
rating systems. Meanwhile, the administrator implements
a regulatory regime based on the collected utilities and cur-
rent contextual state. The transition probability of the next
contextual state is only determined by administrator's con-
ducted regulation and current contextual state.

In this paper, we advocate MARL as a principled method
for solving MEE. When interaction with environment is ac-
cessible, we learn the policies of the agents and the planner
through online MARL methods. When only a historical
dataset is available, we turn to an of�ine MARL protocol.
To this end, we focus on the following question.

Can we design provably ef�cient online and of�ine
algorithms for learning the policies of the planner and

agents to achieve CE and SWM simultaneously in MEE?

Several challenges arise when addressing this question.
First, from a theoretical point of view, it remains unknown
how to mathematically characterize the jointly optimal pol-
icy of a planner and agents such that we can directly mea-
sure the performance of any planner-agent policy in terms
of SWM while achieving CE among agents. Secondly, in
the online and of�ine settings, where the MEE model is not
known a priori, it remains unknown how to �nd the optimal
policy for both planner and agents when this is coupled with
the problem of balancing the exploration-exploitation trade-
off in an online setting and the problem of distribution shift
in an of�ine setting. Finally, there are generally in�nitely
many states since the endowments of agents can be continu-
ous, and it is unknown how to handle large state spaces in
such online and of�ine learning problems, especially when

the utilities and transitions are of general functional forms.

Our work addresses these challenges and provides an af-
�rmative answer to the desired question. Speci�cally, by
characterizing the optimal policy of planner and agents via
a �xed-point formulation, we devise a novel suboptimality
metric such that the suboptimality being zero is equivalent
to the planner-agent policy being jointly optimal. Then,
for the online setting where we learn the optimal policy
by interacting with the MEE, we propose a model-based
MARL algorithm, dubbed asMOLM, which combines the
Optimism in Face of Uncertainty (OFU) principle (Auer
et al., 2002; 2009; Jin et al., 2018; 2019) with a subroutine
which solves the subgame CE for the agents at each timestep.
Our algorithm can readily incorporate general function ap-
proximators such as kernel functions and neural networks
in the estimation of the transition model and is shown to
achieve a sublinear regret with respect to the newly designed
suboptimality metric. Furthermore, for the of�ine setting
where we aim to learn the optimal policy solely from a given
dataset, we propose a similar algorithm that incorporates the
pessimism principle (Buckman et al., 2020; Jin et al., 2021b)
to overcome the distributional shift between trajectories in
the dataset and those induced by the optimal policy. This
algorithm is also able to employ general function approxi-
mators and is shown to �nd a policy whose suboptimality
decays sublinearly in the size of the dataset. Finally, as a
byproduct, we prove that our algorithms achieve approxi-
mately fair division among the agents (Varian, 1973; Budish
et al., 2017; Babaioff et al., 2019) in both the online and
of�ine settings.

Contributions. Our contributions are three-fold. First,
we propose a new economic system known as MEE in
attempt to understand the theoretical properties of solu-
tions to planner-agent economic systems via MARL ap-
proaches. We de�ne a suboptimality function to charac-
terize the optimal policy for the planner and the agents in
an MEE, with another suboptimality proposed to charac-
terize the fair division property among the agents. Second,
we design a MARL-style algorithmMOLMto �nd the op-
timal policy for the planner and the agents from data in
online setting. ForMOLMwe establish an online regret
upper bound,eO(

p
dH 4N 2K ), whereK is the number of

episodes,H is the time step,N is the number of agents,d
is the eluder dimension of the general function class used
by MOLM, and eO(�) hides the logarithmic terms and con-
stants. Third, in addition toMOLM, we designMPLMfor
of�ine MEE. For MPLM, we establish an of�ine subopti-

mality bound,eO(
q

C?
� H 4N 2=K ), whereK is the size of

dataset andC?
� is the distribution shift coef�cient in sense of

partial coverage. Theoretical results show that bothMOLM
andMPLMprovably �nd the optimal policy for planner and
agents in the two settings. In addition, they provably achieve
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fair division among agents as a byproduct.

1.1. Related Work

Our work adds to the line of research in applying machine
learning methods to economic problems such as EE (Guo
et al., 2021), mechanism design (Kandasamy et al., 2020),
and social planning problems (Blaug, 2007). Our analysis
of MEE is based on previous works on EE (Debreu, 1982;
Zhang, 2011). Motivated by the extensive literature on on-
line and of�ine RL, our works apply the optimism principle
(Auer et al., 2002; Jin et al., 2018) and pessimism principle
(Buckman et al., 2020; Jin et al., 2021b) in online and of�ine
settings, respectively. Our work is also related to literature
in MARL (Bucarey et al., 2019; Zhong et al., 2021) and RL
with general function approximations (Xie et al., 2021; Cai
et al., 2020b). However, none of the previous work analyzes
bilevel economic systems, as we do for MEE in this paper.
See AppendixB for full discussions of related work.

NotationsWe provide a table of notation in AppendixA.

2. Preliminaries

In this section, we introduce our economic model known as
MarkovianExchangeEconomy (MEE) which involves sev-
eral self-interested agents and a social planner. We specify
the goal for both planner and agents, and we characterize
their jointly optimal policy via a �xed-point formulation.
All the proofs for the theorems are referred to AppendixE.

2.1. Markovian Exchange Economy

We de�ne a �nite horizon Markovian exchange economy
as(S; A ; B; N; L; H; f u( i )

h gi 2 [N ];h 2 [H ]; f Ph gh2 [H ]) which
consists ofN agents, one social planner,L goods, andH
time steps. The state space is denoted byS = C � E N ,
whereCis the context space andE � [0; 1]L is the space of
each agent's endowments. A state at steph is denoted by
sh = ( ch ; e(1)

h ; � � � ; e(N )
h ) 2 S. The agents' action space is

denoted byA = X (1) � � � � �X (N ) � [0; 1]L , whereX ( i ) 2
[0; 1]L is the allocation space of thei th agent and[0; 1]L is
the price space. We denote byah = ( x (1)

h ; � � � ; x (N )
h ; ph )

the agents' action at steph. The planner's action space is
denoted byB which is discrete, and the planner's action at
steph is denoted bybh 2 B. The utility function of the
i th agent at steph is denoted byu( i )

h : S � X ( i ) 7! [0; 1].
The transition kernel at steph is denoted byPh (s0js; b) :
S � B 7! �( S). We note that the transition kernelPh does
not depend on the agents' action, but only the planner's.

Policy and Value Functions. Without loss of generality,
in the sequel we always focus on deterministic policies for
both planner and agents. A planner's policy is denoted by
� = f � h gh2 [H ] where� h : S 7! B . An agents' policy

is denoted by� = f � h gh2 [H ] where� h : S 7! A , s 7!

(� (1)
h (s); � � � ; � (N )

h (s); � p
h (s)) . That is,� ( i )

h determines the
allocation of thei th agent and� p

h determines the price. We
assume that� and� belong to classes� andN respectively.
Given any pair of policy(�; � ), we de�ne its action-value
function and state value function recursively as

Q( �;� ) ;( i )
h (sh ; x ( i )

h ; bh ) = u( i )
h (sh ; x ( i )

h )

+
Z

S
V ( �;� ) ;( i )

h+1 (s0)Ph (ds0jsh ; bh );

V ( �;� ) ;( i )
h (sh ) = Q( �;� ) ;( i )

h (sh ; � ( i )
h (sh ); � h (sh )) ;

(1)

for any(sh ; x ( i )
h ; bh ; h; i ) 2 S � X ( i ) � B � [H � 1] � [N ].

For stepH , we de�neQ( �;� ) ;( i )
H (sH ; x ( i )

H ) = u( i )
H (sH ; x ( i )

H )
andV ( �;� ) ;( i )

H (sH ) = Q( �;� ) ;( i )
H (sH ; � ( i )

H (sH )) . By the def-
inition, all these functions take value between0 andH .

2.2. The Goal of MEE: Social Welfare Maximization
with Competitive Equilibrium

Now we specify the goal for both social planner and agents
in an MEE, that is, the agents aim to achievecompetitive
equilibriumat each step and the planner aims tomaximize
the social welfarewhich is the sum of utilities of all agents.
We �rst study the optimal policy for the agents and the
planner respectively, and after we de�ne the joint optimality
for planner-agents policy pair(�; � ). The joint optimality
can be characterized by a �xed-point formulation, which
allows us to de�ne the suboptimality for any policy pair.

One-Step Competitive Equilibrium. The agents' optimal
policy � ? is de�ned as the one givingcompetitive equilib-
rium with respect to the utility functionsf u( i ) gi 2 [N ] at each
steph. To this end, we �rst de�ne a competitive equilibrium
(Mas-Colell et al., 1995; Guo et al., 2021) as follows, which
is adapted to the Markovian exchange economy.

De�nition 2.1 (Competitive Equilibrium). A competitive
equilibrium (CE) at states = ( c; e(1) ; � � � ; e(N ) ) 2 S is an
allocation and price-vector pair(x (1) ;? ; � � � ; x (N ) ;? ; p?) 2
A such that(i ) the allocation is feasible and(ii ) all agents
maximize their utilities under the budget induced by price
p?. In other words, following two conditions hold,

X

i 2 [N ]

x ( i ) ;?
j 6

X

i 2 [N ]

e( i )
j ; 8j 2 [L ]; (2)

x ( i ) ;? 2 arg max
(x ( i ) )> p? � (e( i ) )> p?

u( i ) (s; x( i ) ;? ); 8i 2 [N ]: (3)

For simplicity, we denote any competitive equilibrium allo-
cation and price pair at states with respect tof u( i ) gi 2 [N ]

as(x (1) ;? ; � � � ; x (N ) ;? ; p?) 2 CE(f u( i ) (s; �)gi 2 [N ]). Based
on De�nition 2.1, we de�ne the agents' optimal policy as
the one that outputs CE pairs at each time step.
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De�nition 2.2 (Optimal Policy of Agent). The agents' opti-
mal policy� ? is the policy in� such that for any(h; sh ) 2
[H ] � S , � ?

h (sh ) = ( � ?;(1)
h (sh ); � � � ; � ?;(N )

h (sh ); � ?;p
h (sh ))

satis�es� ?
h (sh ) 2 CE(f u( i )

h (sh ; �)gi 2 [N ]).

Under certain assumptions (Mas-Colell et al., 1995; Guo
et al., 2021) on the utility functionsf u( i )

h gi 2 [N ];h 2 [H ], the
competitive equilibrium exists. To measure the suboptimal-
ity of a given policy� , we further de�ne the best responce
policy of � that reallocates among agents given the price
system of� to achieve competitive equilibrium.

De�nition 2.3 (Best Responce of Agent Policy). Given
any agents' policy� 2 � , the best responce agents' policy
� ?(� ) is the one in� such that for any(h; sh ) 2 [H ] � S ,
� ?

h (� )(sh ) = ( � ?;(1)
h (� ); � � � ; � ?;(N )

h (� ); � ?;p
h (� ))( sh ) sat-

is�es � ?;p
h (� )(sh ) = � p

h (sh ) and� ?;( i )
h (� )(sh ) 2

arg max
x ( i )

h 2X ( i ) :( x ( i )
h )> � p

h (sh ) � (e( i )
h )> � p

h (sh )

u( i )
h (sh ; x ( i )

h ): (4)

The existence of� ?(� ) is guaranteed by the theorem of the
maximum, see Theorem A.2.21 of (Jehle, 2001). With the
best responce agent policy� ?(� ), we can measure the sub-
optimality of � by comparing the value functions induced
by � and� ?(� ), which also gives a �xed-point formulation
of the agents' optimal policy. We conclude this property in
the following theorem whose proof is in AppendixE.1.

Theorem 2.4. For any policy pair(�; � ) satisfying the re-
source constraints, i.e., for any(j; h; s h ) 2 [L ] � [H ] � S ,

NX

i =1

(� ( i )
h (sh )) j �

NX

i =1

(e( i )
h ) j ;

the following two conclusions hold. (i) For any steph 2 [H ]
and statesh 2 S, we have that

V ( �;� ) ;( i )
h (sh ) � V ( �;� ? ( � )) ;( i )

h (sh ): (5)

(ii) If the equalityV ( �;� ? ( � )) ;( i )
1 (s1) = V ( �;� ) ;( i )

1 (s1) holds
for anys1 2 S, then for anyh 2 [H ] andsh 2 S, � h (sh ) is
a competitive equilibrium with respect tof u( i )

h (sh ; �)gi 2 [N ].

Theorem2.4tells that we end up higher values when substi-
tuting � by � ?(� ). Whenever the equality holds, the agent
policy � is optimal. Motivated by this �xed-point character-
ization of� ?, we de�ne the suboptimality of agents' policy
to be SubOpt( i )

A (�; �; s 1) for each agenti 2 [N ] as

V ( �;� ? ( � )) ;( i )
1 (s1) � V ( �;� ) ;( i )

1 (s1): (6)

Social Welfare Maximization. For given agents' policy� ,
we de�ne the planner's optimal� ?(� ) to be the one inN
that maximizes the social walfare

P N
i =1 V ( �;� ) ;( i )

1 (s1), i.e.,
the sum of utility functions over agents and time steps.

De�nition 2.5 (Optimal Policy of Planner). The planner's
optimal policy� ?(� ) given agents' policy� is the one inN
such that for any(h; sh ) 2 [H ] � S , � ?

h (sh ) belongs to

arg max
bh 2B

Z

S

NX

i =1

V ( � ? ( � ) ;� ) ;( i )
h+1 (s0)Ph (ds0jsh ; bh ): (7)

We note thatV ( � ? ( � ) ;� ) ;( i )
h+1 only depends on� ?

j (� ) for j > h
and thus� ?(� ) is well-de�ned. Given any policy pair(�; � ),
we can measure the suboptimality of� with respect to� ?(� )
by comparing the social walfare induced by� and� ?(� ).
We show this result by the following theorem proven in
AppendixE.2.

Theorem 2.6. For any policy pair(�; � ), the following two
conclusions hold. (i) For any steph 2 [H ] and statesh 2 S,

NX

i =1

V ( �;� ) ;( i )
h (sh ) �

NX

i =1

V ( � ? ( � ) ;� ) ;( i )
h (sh ): (8)

(ii) Furthermore, if the equality
P N

i =1 V ( � ? ( � ) ;� ) ;( i )
1 (s1) =

P N
i =1 V ( �;� ) ;( i )

1 (s1) holds for anys1 2 S, then for any
h 2 [H ] andsh 2 S we have that

� h (sh ) 2 arg max
bh 2B

Z

S

NX

i =1

V ( � ? ( � ) ;� ) ;( i )
h+1 (s0)Ph (ds0jsh ; bh ):

Parallel to Theorem2.4, Theorem2.6shows that we end up
higher values when substituting� by � ?(� ). Whenever the
equality holds, the planner policy� is optimal given� . Mo-
tivated by the �xed-point formulation of� ?(� ), we de�ne
the suboptimality of planner's policySubOptP (�; �; s 1) as

NX

i =1

V ( � ? ( � ) ;� ) ;( i )
1 (s1) � V ( �;� ) ;( i )

1 (s1): (9)

Joint Optimality. Now we de�ne the jointly optimal policy
for the planner and the agents as(� ?(� ?); � ?), where� ?

and� ?(� ?) satis�es De�nition 2.2and2.5repectively, i.e.,
the agents �nd one-step CE and the planner maximizes the
social walfare induced by the agents' CE policy. Based on
the suboptimality(6) and(9) for agents and planner, we
further de�ne the suboptimalitySubOpt(�; �; s 1) for any
planner-agents policy pair(�; � ) as the following sum,

NX

i =1

SubOpt( i )
A (�; �; s 1) + SubOptP (�; � ?(� ); s1): (10)

Plugging in the expression of suboptimalities(6) and(9), the
suboptimality(10) is equivalent to the following expression,

NX

i =1

V ( � y ( � ) ;� ? ( � )) ;( i )
1 (s1) � V ( �;� ) ;( i )

1 (s1); (11)
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where for simplicity, we denote� y(� ) := � ?(� ?(� )) the
optimal planner policy given the best responce agent policy
of � . We keep to this notation in the sequel. The following
theorem, a corollary of Theorem2.4and2.6, shows that the
joint optimality is equivalent to that (11) vanishes.

Theorem 2.7(Fixed-Point Characterization of Joint Opti-
mality). A planner-agents policy pair(�; � ) is jointly opti-
mal if and only ifSubOpt(�; �; s 1) (11) equals to zero.

2.3. Fair Division Property

Achieving competitive equilibrium among agents is also re-
lated to the notion offair divisionmechanism which requires
sharing incentive (SI) and Pareto-ef�ciency (PE) (Varian,
1973; Budish et al., 2017; Babaioff et al., 2019; 2021; Guo
et al., 2021). An allocationxh 2 X (1) � � � � �X (n ) satis�es
SI at steph and statesh = ( ch ; eh ) if the utility the i -th
agent receives is at least as much as its utility when using
its endowment, i.e.u( i )

h (sh ; x ( i )
h ) � u( i )

h (sh ; e( i )
h ). This im-

plies that all agents have the incentive to participate in this
division mechanism. Besides, a feasible allocationxh is PE
at steph and statesh = ( ch ; eh ) if the utility of one agent
can be increased only by decreasing the utility of others.
Formally, allocationxh is said to dominate another allo-
cationexh given statesh , if u( i )

h (sh ; x ( i )
h ) � u( j )

h (sh ; ex ( i )
h )

for all i 2 [N ] and there exists somej 2 [N ] such that
u( i )

h (sh ; x ( i )
h ) > u ( j )

h (sh ; ex ( i )
h ). An allocationxh is Pareto-

ef�cient given statesh if it is not dominated by any other
allocations. We denote the set of Pareto-ef�cient allocations
at steph and statesh by PE(sh ; h).

To characterize the fair division property when �nding the
optimal policy of agents, we further introduce corresponding
loss functions. We �rst de�ne the SI loss̀SI

h for any agents'
policy � at steph and statesh as the sum, over all agents, of
how much they are worse off than their endowment utilities,
i.e., we de�ne`SI

h (�; s h ) as

NX

i =1

(u( i )
h (sh ; e( i )

h ) � u( i )
h (sh ; � ( i )

h (sh ))) + : (12)

Then we de�ne the PE loss̀PE
h for � at steph and statesh

as the minimal sum, over all agents, of how much they are
worse off than PE allocations, i.e., we de�ne`PE

h (�; s h ) as

inf
x 2PE (sh ;h )

NX

i =1

(u( i )
h (sh ; x ( i ) ) � u( i )

h (sh ; � ( i )
h (sh ))) + : (13)

Finally, we de�ne the FD loss̀FD
h for policy � at steph as

the maximum of SI loss̀SI
h and PE loss̀PE

h , i.e.,

`FD
h (�; s h ) = max

�
`PE

h (�; s h ); `SI
h (�; s h )

	
: (14)

2.4. General Function Approximation and CE Oracle

In this paper, we apply MARL-style approaches to solve
MEE in both online and of�ine settings withgeneral func-
tion approximations. Speci�cally, we consider two func-
tion classesU and P to represent the utility functions
f u( i )

h g( i;h )2 [N ]� [H ] and the transition kernelsf Ph gh2 [H ] re-
spectively. We make the following realizability assumptions
(Uehara & Sun, 2021; Xie et al., 2021) on them.

Assumption 2.8(Realizability). Without loss of generality,
we assume thatX ( i ) 's are the same for alli 2 [N ]. Then we
assume that utility functionu( i )

h 2 U and transitionPh 2 P
holds for any(i; h ) 2 [N ] � [H ].

Besides, we assume that for each set off u( i ) gi 2 [N ] in U,
there exists a CE oracleCE(f u( i ) (s; �)gi 2 [N ]) for anys 2
S that returns CE allocation-price vector pair. This can
be realized ef�ciently via methods introduced inVarian &
Varian(1992); Zhang(2011); Zahedi et al.(2018).

3. Online Learning Algorithm

3.1. Setup and Learning Objective

Online Learning Protocol. We study online episodic set-
ting where an online learning algorithm plays an MEE for
K episodes. At the beginning of thek-th episode, the al-
gorithm determines the planner's and agents' policy pair
(� k ; � k ), and an initial statesk

1 is chosen by the environment.
At each time steph 2 [H ], the agents and the planner ob-
serve statesk

h 2 S and pick their own actionsak
h = � k

h (sk
h )

andbk
h = � k

h (sk
h ). Subsequently, the environment transits

to the next statesk
h+1 � Ph (�jsk

h ; bk
h ) and they observe the

utilities f uk; ( i )
h gi 2 [N ] with uk; ( i )

h = u( i )
h (sk

h ; xk; ( i )
h ).

Learning Objective. Based on the de�nition of suboptimal-
ity (11) for any policy pair(�; � ), we de�ne the following
online regret with respect to achieving joint optimality.

De�nition 3.1 (Online Regret for Joint Optimality). Let
(� k ; � k ) be the policy pair executed by any online learning
algorithm in thek-th episode. After a total ofK episodes,
the online regret for joint optimality is de�ned as

RegretCE,SWM(K ) =
KX

k=1

SubOpt(� k ; � k ; sk
1 ): (15)

Moreover, we also de�ne the online regret with respect to
achieving fair division based on the notion of FD loss (14).

De�nition 3.2 (Online Regret for Fair Division Property).
Let (� k ; � k ) be the policy pair executed by any online algo-
rithm in thek-th episode. After a total ofK episodes, the
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the online regret for fair division property is de�ned as

RegretFD(K ) =
KX

k=1

E� k

"
HX

h=1

`FD
h (� k ; sh )

#

: (16)

Each summand in(16) re�ects the expected total FD loss
of � k along the trajectories induced by� k . We remark that
RegretFD(K ) is an extension of the FD loss de�ned in (Guo
et al., 2021) to sequantial settings. Our goal in the online
setting is to design algorithms with both regrets sublinear in
K , and polynomial ind andH , whered is some dimension
of the function class used by the algorithm.

3.2. Algorithm: Model-based Optimistic Online
Learning for MEE

We proposeModel-basedOptimistic onlineLearning for
MEE (MOLM, Algorithm 1) to learn the joint optimal policy
for planner and agents in the online setting, which involves
a model estimation step and an optimistic planning step.

Model Estimation Step (Line 3).At the beginning ofk-th
episode, we construct con�dence sets for the utilityu( i )

h
and the transitionPh using data collected before thek-th
episode, inspired byRusso & Van Roy(2013); Ayoub et al.
(2020); Cai et al.(2020b). For utility u( i )

h , we let uk; ( i )
h

minimize the empirical mean squared error inU and let con-
�dence setUk; ( i )

h consist of all the utility functions inU with

empirical mean squared discrepency fromuk; ( i )
h less than

a given threshold� (1) . For transitionPh , we similarly con-
struct the con�dence setP k

h via value-targeted regression
(Ayoub et al., 2020; Cai et al., 2020b). Given value function
estimatorsf V �; ( i )

h+1 gk � 1
� =1 , we letP k

h minimize the empirical
mean squared error in predicting the value of future social
welfare

P N
i =1 V �; ( i )

h+1 givens�
h ; b�

h , and the con�dence setP k
h

constains all transitions inP that make similar predictions
to P k

h with empirical mean squared discrepency less than
another threshold� (2) . Details of the model estimation step
are concluded in Algorithm3 in AppendixC.

Optimistic Planning Step (Line 4 to Line 8). Then using
Uk; ( i )

h andP k
h , MOLMperforms optimistic planning accord-

ing to (1), De�nition 2.2and2.5 to obtain(� k ; � k ) which
is executed in thek-th episode. Intuitively, we �rst solve
the sub-problem of one-step CE for the agents by choosing
the optimal agents' policy with respect to the estimated op-
timistic utilities. After, we cast the sub-problem of social
welfare maximization for the planner as �nding the optimal
policy in an Markov decision process whose reward is in-
duced by the agents' utilities. Speci�cally, given the value
function estimatorsV k; ( i )

h+1 at steph + 1 with V k; ( i )
H +1 being

zero functions, we �rst choose the most optimistic model

estimator at steph from Uk; ( i )
h andP k

h respectively as

buk; ( i )
h (s; x( i ) ) = arg max

u2U ( i ) ;k
h

u(s; x( i ) ); (17)

bP k
h (�js; b) = arg max

P 2P k
h

Z

S

NX

i =1

V k; ( i )
h+1 (s0)P(ds0js; b); (18)

for any(i; s; x ( i ) ; b) 2 [N ]�S �X ( i ) �B . Then we choose
the agents' policy� k

h = ( � k; (1)
h (s); � � � ; � k; (N )

h (s); � k; p
h (s))

so as to output CE pairs with respect to the estimated opti-
mistic utility function buk; ( i )

h by a CE oracle (Section2.4),

� k
h (s) = CE(f buk; ( i )

h (s; �)gi 2 [N ]): (19)

Meanwhile, we choose the planner policy� k
h so as to maxi-

mize the estimated optimistic future social welfare,

� k
h (s) = arg max

b2B

NX

i =1

Z

S
V k; ( i )

h+1 (s0) bP k
h (ds0js; b): (20)

We note thatV k; ( i )
h+1 can be seen as the state-value function of

a �nite-horizon MDP whose reward of states and actionb
is given bybuk; ( i )

h (s; � k
h (s); b). After that, the value function

estimators at steph are updated accordingly, i.e.,

Qk; ( i )
h (s; x( i )

h ; b) = buk; ( i )
h (s; x( i )

h )+

Clip [0;H � h]

� Z

S
V k; ( i )

h+1 (s0) bP k
h (ds0js; b)

�
;

V k; ( i )
h (s) = Qk; ( i )

h

�
s; � k; ( i )

h (s); � k
h (s)

�
;

(21)

for any(s; a; b) 2 S � A � B , where we clip the second
term inQk; ( i )

h between0 andH � h due to the assumption
that utility functions fall in the range[0; 1]. Finally,MOLM
executes the joint policy(� k

h ; � k
h ) and collects the data for

thek-th episode according to the protocol in Section3.1

3.3. Main Theoretical Results for Online Learning

Our main theoretical results are upper bounds on the two
online regrets(15) and(16) incurred by Algorithm1. For
the analysis, we introduce the notion ofeluder dimension
which is �rstly proposed by (Russo & Van Roy, 2013).

De�nition 3.3 (Eluder Dimension). Let Z be a set of real-
valued functions onX . For any" > 0 and� 2 [K ], we say
thatx � 2 X is (Z ; " )-independent ofx1; � � � ; x � � 1 2 X
if there existsf 1; f 2 2 Z such that both

P � � 1
j =1 jf 1(x j ) �

f 2(x j )j2 � "2 andjf 1(x � ) � f 2(x � )j > " hold. Theeluder
dimensionof Z at scale" , denoted bydimE(Z ; " ), is then
de�ned as the length of the longest sequencef x j g�

j =1 such
thatx j is (Z ; " )-independent off x i g

j � 1
i =1 for anyj 2 [� ].

We refer toRusso & Van Roy(2013) for a detailed dis-
cussion of the eluder dimension. For simplicity, we de�ne
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Algorithm 1 Model-based Optimistic Online Learning for Markov Exchange Economy (MOLM)

Input: Optimism parameters� (1) and� (2) . Function classesU andP.
1: Initialize datasetD0

h = ; for all h 2 [H ]. SetV k; ( i )
H +1 (�) = 0 for all (i; k ) 2 [N ] � [K ].

2: for k = 1 to K do
3: fU k; ( i )

h g(h;i )2 [H ]� [N ]; fP k
h gh2 [H ] = ME(U; P; fD k

h gh2 [H ]; � (1) ; � (2) ) // Model Estimation, Algorithm3.

4: � k ; � k ; f V k; ( i )
h g(h;i )2 [H ]� [N ] = OPL(fU k; ( i )

h g(h;i )2 [H ]� [N ]; fP k
h gh2 [H ]). // Optimistic Planning, Algorithm4.

5: Observe initial statesk
h of episodek.

6: for h = 1 to H do
7: Take actionsak

h = � k
h (sk

h ) andbk
h = � k

h (sk
h ). Observe the next statesk

h+1 and the utilitiesuk; ( i )
h .

8: Update datasetDk
h = Dk � 1

h [ f sk
h ; ak

h ; bk
h ; f uk; ( i )

h gi 2 [N ]; f V k; ( i )
h gi 2 [N ]g.

9: end for
10: end for

ZP to be the class of mappingszP : S � B � f f : S 7!
[0; HN ]g 7! [0; 1]; (s; b; f (�)) 7!

R
S f (s0)P(ds0j s; b), for

anyP 2 P . With these preparations, we de�ne dimension
d = max f dimE(U; 1=K ); dimE(ZP ; 1=K )g to character-
ize the complexity of function classesU andP. The fol-
lowing theorem is the main theoretical results in the online
setting. All the omitted proofs are in AppendixC.1andF.

Theorem 3.4(Regret of Algorithm1). By setting parame-
ters� (1) asC1 log(N (1=K; U; k � k1 )NHK 2=� ) and� (2)

asC2H 2N 2 log(N (1=(NHK ); P; k�k1 ;1)NHK 2=� ) for
some absolute constantsC1 andC2 in Algorithm1, it holds
with probability at least1 � � that the regret for joint opti-
mality (15) and the regret for fair division property(16) of
Algorithm1 satis�es that

RegretCE ;SWM (K )�O (
q

dH 2(N 2� (1) + � (2) )K ): (22)

RegretFD (K ) � O (
p

dH 2N 2� (1) K ): (23)

We show the exact expression of� (1) and� (2) in the proof
of Theorem3.4 in AppendixC.1. Theorem3.4 indicates
that the regret for joint optimality of Algorithm1 is of
order eO(

p
dH 4N 2K ), which shows thatMOLMef�ciently

�nds the jointly optimal policy approximately. Besides joint
optimality, Algorithm1 also achieves fair division among
agents approximately as a byproduct, i.e., it approximately
�nds agents' policy which simultaneously achieves SI and
PE in the online setting. We specialize Theorem3.4 to
tabular, linear, and kernel cases in AppendixD.

4. Of�ine Learning Algorithm

4.1. Setup and Learning Objective

Of�ine Learning Protocol. Now we study the of�ine set-
ting where the learner only has access to an of�ine dataset
D = f (s�

h ; f x �; ( i )
h gi 2 [N ]; b�

h ; f u�; ( i )
h gi 2 [N ])g( �;h )2 [K ]� [H ]

which is generated as a prior by an economist in the MEE.

We characterize the generation process ofD by the follow-
ing de�nition.

De�nition 4.1 (Of�ine Data Generation). The datasetD
consists ofK i.i.d. trajectoriesfD � g� 2 [K ], where each tra-

jectoryD � = f (s�
h ; f x �; ( i )

h gi 2 [N ]; b�
h ; f u�; ( i )

h gi 2 [N ])gh2 [H ]

is collected as a prior in the MEE. Speci�cally, for each
� 2 [K ], it holds thatsh+1 � Ph (� j s�

h ; b�
h ), u�; ( i )

h =

uh (s�
h ; x �; ( i )

h ).

Learning Objective. In of�ine learning, the goal is to de-
sign algorithm that outputs policy pair(b�; b� ) which is joint
optimal and achieves fair division. For being joint optimal,
we measure the performance of(b�; b� ) by SubOpt(b�; b�; s 1)
de�ned in (11). For achieving fair division, we adapt the
FD loss de�ned in (14) to of�ine setting as follows.

L FD (�; � ) =
HX

h=1

E� h

h
`FD

h (�; s h )
i
; (24)

where� h is the visitation measure at steph 2 [H ] that the
datasetD obeys, i.e.,� h (s; f x ( i ) gi 2 [N ]; b) is de�ned as

P(s�
h = s; f x �; ( i ) gi 2 [N ] = f x ( i )

h gi 2 [N ]; b�
h = b); (25)

for any � 2 [K ] in D. We hope to design an algorithm
that achieves suboptimalitySubOpt(b�; b�; s 1) and of�ine
FD lossL FD (b�; b� ) decaying at a negative square root rate
with respect toK .

4.2. Algorithm: Model-based Pessimistic Of�ine
Learning for MEE

We proposeModel-basedPessimistic of�ineLearning for
MEE (MPLM, Algorithm 2) to learn the desired planner-
agent policy pair, which involves a model estimation step
and a pessimistic policy optimization step. We usebV ( �; b� ) ;( i )

h; ( bP ; bu)

to denote the value function of policy pair(b�; b� ) induced by
the estimated utility functionbu = f bu( i )

h g(h;i )2 [H ]� [N ] and
the estimated transitionbP = f bPh gh2 [H ] according to (1).
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Algorithm 2 Model-based Pessimistic Online Learning for Markov Exchange Economy (MPLM)
Input: Pessimism Parameter� 1, � 2. Function classesU andP.
1: for h = 1 to H do
2: Construct con�dence setsfU ( i )

h;� 1
gi 2 [N ] andPh;� 2 according to (26), (27). // Model Estimation.

3: end for
4: for h = 1 to H do
5: Setbu( i )

h (s; x( i ) ) = arg minu2U ( i )
h;� 1

u(s; x( i ) ) andb� h (s) = CE(f bu( i )
h (s; �)gi 2 [N ]), for any(i; s; x ( i ) ) 2 [N ]�S �X ( i ) .

6: end for
7: Set(b�; bP) = arg max � 2 � min bP :f bPh 2P h;� 2 ;8h2 [H ]g :

P N
i =1

bV ( �; b� ) ;( i )

1;( bP ; bu)
(s1): // Pessimistic Policy Optimization.

Output: Policy pair(b�; b� ).

Model Estimation (Line 1 to 3). We �rst construct con�-
dence sets for the utilityu( i )

h and the transitionPh respec-

tively. For u( i )
h , we let the con�dence setU( i )

h;� 1
consist of

all functions inU whose empirical mean squared errors are
less than a given threshold� 1, i.e., we setU( i )

h;� 1
as

�
u 2 U :

1
K

KX

� =1

�
u�; ( i )

h � u(s�
h ; x �; ( i )

h )
� 2

� � 1

�
; (26)

For Ph , we �rst obtain the maximum likelihood estimator
bPMLE

h that maximizes the empirical likelihood function, i.e.,
bPMLE

h = arg maxP 2P

P K
� =1 logP(s�

h+1 j s�
h ; b�

h ). Then we
set the con�dence setPh;� 2 to be transitions inP whose
empirical mean squared TV-distance tobPMLE

h is less than a
given threshold� 2, i.e., we setPh;� 2 as

�
P2P :

1
K

KX

� =1

k( bPMLE
h � P)( � j s�

h ; b�
h )k2

1 � � 2

�
: (27)

Pessimistic Optimization (Line 4 to 8). With U( i )
h;� 1

and
Ph;� 2 , MPLMthen performs pessimistic policy optimization
to �nd the policy pair(b�; b� ) as its output. Parallel to the
online setting, we �rst solve the sub-problem for agents via
choosing the optimal agents' policyb� with respect to the es-
timated pessimistic utilities. After, we cast the sub-problem
of social welfare maximization for the planner as an of�ine
policy optimization problem in MDP with reward induced
by the agents' utilities. Inspired byUehara & Sun(2021),
we solve this sub-problem by jointly optimizing over� and
P such that the pessimistic social welfare estimator is maxi-
mized, which can be formulated as a minimax optimization
problem. See Algorithm2 for a detailed description.

4.3. Main Theoretical Results for Of�ine Learning

Our main theoretical results are upper bounds on the subop-
timality (11) and of�ine FD loss(24) incurred by Algorithm
2. To guarantee provably ef�cient learning, we make cer-
tain assumptions on the coverage property of the datasetD.
Recall that the visitation measure� h at steph 2 [H ] the

datasetD obeys is de�ned in(25). In parallel, we de�ne the
visitation measured( �;� )

h (s; f x ( i ) gi 2 [N ]; b) at steph 2 [H ]
of any given joint policy(�; � ) as

P(sh = s; f x ( i ) gi 2 [N ] = f x ( i )
h gi 2 [N ]; bh = bj �; �

�
: (28)

De�nition 4.2 (Distribution Shift). We de�ne the distribu-
tion shift coef�cient between a given joint policy(�; � ) and
the dataset visitation measure� = f � h gh2 [H ] as

C( �;� )
� = sup

h2 [H ]
E� h

 
d( �;� )

h (s; f x ( i ) gi 2 [N ]; b)

� h (s; f x ( i ) gi 2 [N ]; b)

! 2

: (29)

Assumption 4.3(Partial Coverage). We assume that the
distribution shift between all the possible jointly optimal
policy and the dataset visitation measure is �nite, that is,

C?
� := sup

� 2 N? ;� 2 � ?
C( �;� )

� < 1 ; (30)

where� ? := f � ?(� ) : � 2 Ng; N? := f � ?(� ) : � 2 Ng:

Similar partial coverage assumptions are widely adopted in
of�ine RL literature (Kidambi et al., 2020; Jin et al., 2021b),
which is weaker than uniform coverage assumptions (Munos
& Szepesv́ari, 2008; Chen & Jiang, 2019). The following
two theorems are our main results in of�ine setting. All the
omitted proofs are in AppendixC.2andG.

Theorem 4.4(Suboptimality of Algorithm2). By setting the
parameters� 1 asC1 log(N (1=K; U; k � k1 ) � NH=� )=K
and� 2 asC2 log(N [] (1=K; P; k � k2;1 )H=� )=K for some
absolute constantsC1 andC2 in Algorithm2, it holds with
probability at least1 � � that the suboptimality(11) and
of�ine FD loss(24) of Algorithm2 satis�es

SubOpt(b�; b� ) � O (
q

H 4N 2�C ?
� =K ); (31)

L FD (b�; b� ) � O (
p

H 2N 2�0=K ); (32)

where� = log N [] (1=K 2; P; k�k1;1 )+ log N (1=K 2; U; k�
k1 ) + log( HN=� ), �0 = log( N (1=K 2; U; k � k1 ) � NH=� )
andC?

� is de�ned in(30).
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A. Notations

Throughout this paper, we denote by[N ] = f 1; :::; N g. We also denote by�( X ) the probability space on setX . We denote
by a = O(b) if there exists an absolute constantc such thata � cbwhena andbare both large enough. We useeO(�) to hide
the constants term and logarithmic terms inO(�). We useClip [a;b](c) to representminf maxf a; cg; bg for real numbers
a; b, andc. We usef ag+ to representmaxf a;0g for real numbera. Given a function classF , we denote byN (�; F ; k � k)
the � -covering number ofF by k � k norm, and we denote byN [] (�; F ; k � k) the � -bracket number ofF by k � k norm.
For function classP : S � B 7! �( S), we denote bykPk1;1 = sups;b

R
S jP(s0js; b)jds0 for anyP 2 P . We de�ne that

� ij = 1 if i = j and� ij = 0 if i 6= j . For a distribution� , we useE� [�] andV � [�] to denote the expectation and the variance
taken with respect to� , respectively.

General Notation Explanation
sh = ( ch ; e(1)

h ; � � � ; e(N )
h ) 2 S state at steph, ch 2 C is context,e( i )

h 2 E is endowments of thei th agent
ah = ( x (1)

h ; � � � ; x (N )
h ; ph ) 2 A action of agents at steph, x ( i )

h 2 X ( i ) is allocation of thei th agent,ph 2 [0; 1]L is price
bh 2 B action of planner at steph

u( i )
h utility function of thei th agent at steph

Ph transition kernel at steph
� = f � h gh2 [H ] agents' policy,� h = ( � (1)

h ; � � � ; � (N )
h ; � p

h )
� ? = f � ?

h gh2 [H ] optimal agents' policy� ?
h = ( � ?;(1)

h ; � � � ; � ?;(N )
h ; � ?;p

h )
� ?(� ) = f � h (� )gh2 [H ] best responce agents' policy of� � ?

h (� ) = ( � ?;(1)
h (� ); � � � ; � ?;(N )

h (� ); � ?;p
h (� ))

� = f � h gh2 [H ] planner's policy
� ?(� ) = f � ?

h (� )gh2 [H ] optimal planner's policy given agents' policy� (De�nition 2.5)
� y(� ) = f � y

h (� )gh2 [H ] abbreviation of� ?(� ?(� ))
V ( �;� ) ;( i )

h , Q( �;� ) ;( i )
h value functions of policy pair(�; � ) for thei th agent at steph

Notations for Online Setting Explanation
sk

h = ( ck
h ; ek; (1)

h ; � � � ; ek; (N )
h ) 2 S state at steph of episodek

ak
h = ( xk; (1)

h ; � � � ; xk; (N )
h ; pk

h ) 2 A action of agents at steph of episodek
bk

h 2 B action of planner at steph of episodek
uk; ( i )

h utility of the i th agent at steph of episodek
Uk; ( i )

h con�dence set of utility functions for thei th agent at steph of episodek
P k

h con�dence set of transition kernels at steph of episodek
buk; ( i )

h optimistic utility function estimator of thei th agent at steph of episodek
bP k

h optimistic transition estimator at steph of episodek
� k = f � k

h gh2 [H ] agents' policy of episodek, � k
h = ( � k; (1)

h ; � � � ; � k; (N )
h ; � k; p

h )
� k = f � k

h gh2 [H ] planner's policy of episodek
V k; ( i )

h , Qk; ( i )
h value function estimators at steph of episodek
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Notation for Of�ine Setting Explanation
s�

h = ( c�
h ; e�; (1)

h ; � � � ; e�; (N )
h ) 2 S state at steph in datasetD

a�
h = ( x �; (1)

h ; � � � ; x �; (N )
h ; p�

h ) 2 A action of agents at steph in datasetD
b�

h 2 B action of planner at steph in datasetD
u�; ( i )

h utility of the i th agent in datasetD
U( i )

h;� 1
con�dence set of utility functions for thei th agent at steph

Ph;� 2 con�dence set of transition kernels at steph
bu( i )

h pessimistic utility function estimator of thei th agent at steph
bPh pessimistic transition estimator at steph

b� = f b� h gh2 [H ] estimated optimal agents' policy,b� h = ( b� (1)
h ; � � � ; b� (N )

h ; b� p
h )

b� = f b� h gh2 [H ] estimated optimal planner's policy
bV ( �; b� ) ;( i )

h; ( bP ; bu)
value function of(b�; b� ) induced bybu = f bu( i )

h g(h;i )2 [H ]� [N ] and bP = f bPh gh2 [H ]

For the completeness of the paper, we provide the de�nitions of covering number and bracketing number as follows.

De�nition A.1 (Covering Number byk � k-norm). Let N (�; G; k � k) be the smallest value ofM for which there exist a
subsetf gCover

j gj 2 [M ] � G such that for eachg 2 G, there is aj = j (g) 2 [M ] such that

kgCover
j � gk � �:

De�nition A.2 (Bracketing Number byk � k-norm (Geer et al., 2000)). Let N [] (�; G; k � k) be the smallest value ofM for
which there exist pairs of functionsf [gL

j ; gU
j ]gj 2 [M ] such thatkgU

j � gL
j k � � for all j 2 [M ], and for eachg 2 G, there is

a j = j (g) 2 [M ] such that
gL

j � g � gU
j :

B. Related Work

We present detailed discussions on the related work in this section.

Machine learning for Economy. Our work adds to the vast body of existing literature on applying machine learning
methods to solving various economical issues, where the utility functions for agents are not given a priori but learnable. For
EE,Guo et al.(2021) propose the �rst online learning mechanism which adopts generalized linear function approximation
and achieveseO(

p
K ) online regret and online fair division loss. This theoretical result matches the the conclusion of our

proposed mechanism, when MEE is specialized to EE and the function class of utility is chosen as generalized linear function.
Aimed at analyzing the optimal allocation rules among agents, the automated mechanism design of revenue-maximizing
combinatorial auctions has been widely studied with online learning methods (Bergemann & Valimaki, 2006; Kakade et al.,
2010; Babaioff et al., 2013; Balcan et al., 2016; Dud́�k et al., 2017; Kandasamy et al., 2020). They analyze the online
regret of the proposed mechanism even under the dynamic setting, while they do not consider bilevel economic systems
and general function approximations for handling continuous state space as in this paper. Besides, several other works also
adopt deep RL in multi-agent economic simulations, achieving empirical success (Zheng et al., 2021). Among them,Zheng
et al.(2021) provide the �rst experimental MARL framework for the policy design of bilevel economic systems and obtain
satisfactory results on the simulation baseline. However, the theory behind MARL methods is less studied. More recently,
Min et al. (2022) apply MARL to study the problem of matching in a Markov matching market.

Exchange Economy. Our work is based on a rich line of aforementioned works in CE and fair division of EE (Cohen
& Cyert, 1965; Debreu, 1982; Georgiadis et al., 2006; Zhang, 2011; Dissanayake et al., 2015). Under certain regularity
conditions on utility functions,Debreu(1982) study the existence of CE of EE andZhang(2011) propose a computationally
ef�cient algorithm to compute CE of EE, both of which lay the foundation of our work. Besides, fair division of EE has
been studied from both theoretical aspects (Varian, 1973; Budish et al., 2017; Babaioff et al., 2019; 2021) and practical
points of view (Wolski et al., 2001; Vavilapalli et al., 2013; Zahedi et al., 2018). However, most previous works on EE
assume the full knowledge of the utility functions of agents. As the initial attempt for learning unknown utility, some works
(Zahedi et al., 2018; Le et al., 2020) assert some explicit but also restrictive assumptions on utility.
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Moreover,Mehra(2006); Chatrapati et al.(2011); Cao(2020) study recursive CE (RCE) on dynamic EE, where agents
exchange resources for multiple timesteps but no planner is involved.Cao(2020) study the existance of RCE under several
restrictive assumptions on the transition kernel of dynamic EE. Different from MEE, dynamic EE neglects the co-adaptation
between the agents and the planner and hence is not our interested bilevel system.

Social Planning Problem. Our work is also related to the social planning problem (SPP), a classic topic in welfare
economics (Kahn, 1969; Salyer, 1996; Blaug, 2007). In SPP, a social planner who desires to maximize a prede�ned social
welfare function can make all decisions in the economy. Different from EE, there is no price system in SPP, while the
second social welfare theorem (Blaug, 2007) shows that any SPP can be decentralized to solving CE. Since SPP ignores the
co-adaptation between the social planner and the agents in the economy, previous works on SPP can not solve or decentralize
bilevel systems, such as MEE.

Multi-Agent Reinforcement Learning and Stackelberg Equilibrium. Our work is also related to a rich line of works in
MARL which extends RL to decision-making involving multiple interacting agents (Busoniu et al., 2008; Hernandez-Leal
et al., 2018; 2019; OroojlooyJadid & Hajinezhad, 2019; Zhang et al., 2021), We advocate MARL as a principled method for
solving economical issues. In MARL, agents might have asymmetric roles such leader-follower structure (Bucarey et al.,
2019; Bai et al., 2021; Zhong et al., 2021) which is related to our work, while previous works mainly focus on �nding the
Stackelberg-Nash equilibrium (Başar & Olsder, 1998). Among these works, our MARL application in economics is most
related toZhong et al.(2021) who also study a myopic follower setting. In contrast, in their work the followers aim to �nd
Nash equilibrium while we hope to �nd competitive equilibrium in EE. Also, we study general function approximations
which bears more generality when handling large state space.

Optimism and Online Reinforcement Learning. Our work is related to another �urry line of works studying online RL
cooperated with optimism. wFor tabular setting where state space is �nite, how to propose online RL algorithms achieving
eO(

p
K ) online regret is thoroughly studied (Azar et al., 2017; Jin et al., 2018; Zhang et al., 2020). Adopting the principle of

Optimism in the face of Uncertainty (OFU) (Auer et al., 2002; 2009; Jin et al., 2018; 2019), they overestimate action-value
functions by adding a bonus to incentive exploration. When the state space is large or even continuous, the use of function
approximation is necessary. Also based on OFU, there are several researches (Jin et al., 2019; Wang et al., 2019; Cai
et al., 2020a) apply (generalized) linear function approximation on the transition kernel or action-value function and prove
eO(

p
K ) online regret. Beyond linear setting, a recent line of works study RL with general function approximation (Ayoub

et al., 2020; Cai et al., 2020b; Jin et al., 2021a). Based on the notion of eluder dimension introduced byRusso & Van Roy
(2014) that characterizes the complexity of function class,Ayoub et al.(2020); Cai et al.(2020b) combine non-linear value
target regression and OFU, proposing online RL algorithms with general function approximations achievingeO(

p
K ) online

regret.Jin et al.(2021a) also achieve such a goal by proposing a more generalized complexity measure: Bellman eluder
dimension. All works mentioned above study RL problem involving a single agent, which is different from our interested
bilevel systems.

Pessimism and Of�ine Reinforcement Learning. Our works are also related to many literature concerning pessimism
and of�ine RL in recent years (Liu et al., 2020; Rashidinejad et al., 2021; Jin et al., 2021b; Xie et al., 2021; Uehara &
Sun, 2021). Different from online RL, the introduction of of�ine dataset leads to a potential distribution shift. When the
dataset has no coverage guarantee,Buckman et al.(2020); Zanette(2021) �nd that the lower bound of of�ine RL could even
be exponential. Rather than assuming a well-explored dataset in many previous literature (Antos et al., 2007; Munos &
Szepesv́ari, 2008; Yang et al., 2020; Ross & Bagnell, 2012; Chen & Jiang, 2019), several works (Rajaraman et al., 2020;
Kidambi et al., 2020; Jin et al., 2021b) adopt pessimism in model estimation and proveeO(K � 1=2) suboptimality even under
a partial coverage dataset.Liu et al. (2020) propose a pessimistic variant of �tted Q-learning algorithm (Antos et al., 2007),
achieving the optimal policy within a restricted class of policies without assuming the dataset to be well-explored.Jin
et al.(2021b) propose a provably ef�cient algorithm with the spirit of pessimism to solve of�ine RL with linear function
approximations, under no coverage assumption on the dataset.Rashidinejad et al.(2021) study the of�ine RL in the tabular
case through lower con�dence bound (LCB), only assuming the partial coverage assumption on the dataset. With general
function approximations on of�ine RL and partial coverage dataset, the suboptimality boundeO(K � 1=2) is achieved by both
model-based (Uehara & Sun, 2021) and model-free (Xie et al., 2021) algorithms. They both apply Berstein inequality to
sharpen the convergence rate toeO(K � 1=2). Besides, all works mentioned above analyze the optimization problem over a
single agent, different from a bilevel system.
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C. Omitted Algorithms and Proof Sketches

C.1. Online Setting

C.1.1. OMITTED ALGORITHMS

We present the omitted algorithmME(Algorithm 3) for model estimation andOPL(Algorithm 4) for optimistic planning
respectively.

Algorithm 3 Model Estimation (ME)

Input: Feasible utility setU and transition setP. Historical dataf (s�
h ; a�

h ; b�
h ; f u�; ( i )

h gi 2 [N ])g( �;h )2 [k � 1]� [H ] and value

function estimatorsf V �; ( i )
h+1 g( �;h;i )2 [k � 1]� [H ]� [N ]. Optimism parameter� (1) , � (2) .

1: for h = 1 to H do
2: uk; ( i )

h = argmin u2U
P k � 1

� =1 (u�; ( i )
h � u(s�

h ; x �; ( i )
h ))2, for all i 2 [N ].

3: Uk; ( i )
h = f u 2 U :

P k � 1
� =1 (uk; ( i )

h (s�
h ; x �; ( i )

h ) � u(s�
h ; x �; ( i )

h ))2 � � (1) g, for all i 2 [N ].

4: P k
h = argmin P 2P

P k � 1
� =1 (

P N
i =1 V �; ( i )

h+1 (s�
h+1 ) �

R
S

P N
i =1 V �; ( i )

h+1 (s0)P(ds0js�
h ; b�

h ))2.

5: P k
h = f P 2 P :

P k � 1
� =1 (

R
S

P N
i =1 V �; ( i )

h+1 (s0)P k
h (s0js�

h ; b�
h )ds0 �

R
S

P N
i =1 V �; ( i )

h+1 (s0)P(s0js�
h ; b�

h ))2 � � (2) g.
6: end for
7: Return fU k; ( i )

h g(h;i )2 [H ]� [N ] andfP k
h gh2 [H ].

Algorithm 4 Optimistic Planning (OPL)

Input: Utility con�dence setsfU k; ( i )
h g(h;i )2 [H ]� [N ] and transition con�dence setsfP k

h gh2 [H ].
1: for h = H to 1 do
2: buk; ( i )

h (�; �)= arg maxu2U k; ( i )
h

u(�; �), 8i 2 [N ].

3: bP k
h (�j� ; �)= arg maxP 2P k

h

R
S

P N
i =1 V k; ( i )

h+1 (s0)P(ds0j� ; �).

4: � k
h (�)= CE(f buk; ( i )

h (�; �)gi 2 [N ]).

5: � k
h (�)= arg maxb2B

P N
i =1

R
S V k; ( i )

h+1 (s0) bP k
h (ds0j� ; b).

6: Qk; ( i )
h (�; �; �)= buk; ( i )

h (�; �)+ Clip [0;H � h]f
R

S V k; ( i )
h+1 (s0) bP k

h (ds0j� ; �)g, 8i 2 [N ].

7: V k; ( i )
h (�)= Qk; ( i )

h (�; � k; ( i )
h (�); � k

h (�)) , 8i 2 [N ].
8: end for

C.1.2. PROOFSKETCH OF THEOREM 3.4

In the sequel, we sketch the proof of the �rst conclusion of Theorem3.4, i.e., the upper bound on the regret for joint
optimality. Missing details are left to AppendixF. The proof of the regret for fair division property is left to AppendixF.4.
We start from a decomposition of the online learning regret in the following lemma.

Lemma C.1(Regret Decomposition). We can decompose the online regret de�ned in (15) as following,

Regret(K ) =
KX

k=1

HX

h=1

NX

i =1

E� y ( � k ) ;� ? ( � k )

h
Qk; ( i )

h (sk
h ; � ?;( i )

h (� k )(sk
h ); � y

h (� k )(sk
h )) � Qk; ( i )

h (sk
h ; � k; ( i )

h (sk
h ); � k

h (sk
h ))

i

+
KX

k=1

HX

h=1

E� y ( � k ) ;� ? ( � k )

�
�k
h (sk

h ; ak
h ; bk

h )
�

+
KX

k=1

NX

i =1

V k; ( i )
1 (sk

1 ) � V ( � k ;� k ) ;( i )
1 (sk

1 );

(33)
where�k

h (�; �; �) is de�ned as for any(sh ; ah ; bh ) 2 S � A � B ,

�k
h (sh ; ah ; bh ) =

NX

i =1

u( i )
h (sh ; x ( i )

h ) +
Z

S
V k; ( i )

h+1 (s0)Ph (ds0jsh ; bh ) � Qk; ( i )
h (sh ; x ( i )

h ; bh ): (34)

Here the functionsV k; ( i )
h , Qk; ( i )

h , and the policies(� k
h ; � k

h ) are selected by Algorithm1.
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Proof of LemmaC.1. See AppendixF.1for a detailed proof.

Therefore, it suf�ces to establish upper bounds for each term on the right-hand side of (33). The �rst term is characterized
by the following lemma, which is derived from the choice of(� k ; � k ) on each episode.

Lemma C.2(One-Step Competitive Equilibrium and Social Welfare Maximization). According to Algorithm1, for any
(k; h) 2 [K ] � [H ] and anysh 2 S, it holds that

NX

i =1

Qk; ( i )
h (sk

h ; � ?;( i )
h (� k )(sk

h ); � y
h (� k )(sk

h )) � Qk; ( i )
h (sk

h ; � k; ( i )
h (sk

h ); � k
h (sk

h )) � 0: (35)

Proof of LemmaC.2. See AppendixF.2for a detailed proof.

Besides, the second and the third terms of the right-hand side of (33) are characterized by the next lemma.

Lemma C.3(Optimism and Accuracy). By setting the optimism parameter� (1) and� (2) as

� (1) = 2 log (N (1=K; U; k � k1 ) � 2NH=� ) + 4
�
1 +

p
log(8K 2H=� )

�
; (36)

� (2) = 2H 2N 2 � log (N (1=(KHN ); P; k � k1 ;1) � 2H=� ) + 4
�
HN +

p
H 2N 2=4 � log(8K 2H=� )

�
: (37)

in Algorithm1, then with probability at least1 � � , the following two things holds.
(1) (Optimism) For all(k; h) 2 [K ] � [H ] and any(sh ; ah ; bh ) 2 S � A � B , it holds that

NX

i =1

u( i )
h (sh ; x ( i )

h ) +
Z

S
V k; ( i )

h+1 (s0)Ph (ds0jsh ; bh ) � Qk; ( i )
h (sh ; x ( i )

h ; bh ) � 0: (38)

(2) (Accuracy) By denotingd = max f dimE(U; 1=K ); dimE(ZP ; 1=K )g, it holds that

KX

k=1

NX

i =1

V k; ( i )
1 (sk

1 ) � V ( � k ;� k ) ;( i )
1 (sk

1 ) �O (
p

KH 3N 2 log(4=� )) + H
q

d(N 2� (1) + � (2) )K ) + dH 2N: (39)

Proof of LemmaC.3. See AppendixF.3for a detailed proof.

Proof of Theorem3.4. Combining LemmaC.1, LemmaC.2, and LemmaC.3, we can prove Theorem3.4. According to
LemmaC.1, LemmaC.2, and LemmaC.3, with probability at least1 � � , it holds that

Regret(K ) �
p

8KH 3N 2 log(4=� ) + 4 H
q

2d(N 2� (1) + � (2) )K + dH 2N

� O (
p

dH 2N 2(� 1 + � 2)K );

which �nishes the proof of Theorem3.4.

C.2. Of�ine Setting

Our proof is based on the following two key lemmas.

Lemma C.4(Upper Bound of Suboptimality). For the output(b�; b� ) of Algorithm2, it holds that,

SubOpt(b�; b� ) �
q

C?
� �

HX

h=1

� q
� bu

h + HN �
q

� bP
h

�

+
NX

i =1

�
bV ( b�; b� ) ;( i )

1;( bP ; bu)
� V ( b�; b� ) ;( i )

1

�
(s1);

where error terms are de�ned as� bu
h := E� h

P N
i =1 jbu( i )

h (s; x( i ) ) � uh (s; x( i ) )j2 and� bP
h := E� h k bPh (� j s; b) � Ph (� j s; b)k2

1.
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Proof of LemmaC.4. See AppendixG.1for detailed proof.

In the sequel, we bound the two summations in the suboptimality upper bound in TheoremC.4respectively. To this end, we
introduce the following results, concluded in LemmaC.5, TheoremC.6, and TheoremC.7.

Lemma C.5(Pessimistic). Under eventE := f u( i )
h 2 U ( i )

h;� 1
; Ph 2 P h;� 2 ; for all (i; h ) 2 [N ] � [H ]g, it holds that,

NX

i =1

bV ( b�; b� ) ;( i )

1;( bP ; bu)
(s1) � V ( b�; b� ) ;( i )

1 (s1) � 0:

Proof of LemmaC.5. See AppendixG.2for detailed proof.

Based on LemmaC.4and LemmaC.5, what remains is to upper bound� bu
h and� bP

h in LemmaC.4respectively and to show
that the eventE holds with high probability. These are shown by the following two theorems.

Theorem C.6(Analysis for Utility Function Estimation). For the output(b�; b� ) of Algorithm2, the following statements
hold with probability at least1 � �=2,

1. E0 := f u( i )
h 2 U ( i )

h;� 1
; for all (i; h ) 2 [N ] � [H ]g holds.

2. � bu
h � O (log(N (1=K 2; U; k � k1 ) � NH=� )N=K ), for all (i; h ) 2 [N ] � [H ].

Proof of TheoremC.6. See AppendixG.3for detailed proof.

Theorem C.7(Analysis for Transition Kernel Estimation). For the output(b�; b� ) of Algorithm2,the following statements
hold with probability at least1 � �=2,

1. E1 := f Ph 2 P h;� 2 ; for all h 2 [H ]g holds.

2. � bP
h � O (log(N [] (1=K 2; P; k � k2;1 )H=� )=K ) for all h 2 [H ].

Proof of TheoremC.7. See AppendixG.4for detailed proof.

Now combining the result of TheoremC.7and TheoremC.6and noting thatE = E0 \ E1, we can show that with probability
at least1 � � , the eventE holds, which implies that the conclusion of LemmaC.5holds. Meanwhile, error terms de�ned in
LemmaC.4are bounded as follows

� bu
h � O (N�=K ); �

bP
h � O (�=K );

where we de�ne� = log N [] (1=K 2; P; k � k1;1 ) + log N (1=K 2; U; k � k1 ) + log( HN=� ).

Finally, according to LemmaC.4, we have that

SubOpt(b�; b�; s 1) �
q

C?
� �

HX

h=1

� q
� bu

h + HN �
q

� bP
h

�
� O (

q
H 4N 2�C ?

� =K );

which �nishes the proof of Theorem4.4.

D. Special Cases

D.1. Linear Function Approximation

On the �rst case, we parameterizeP andU by a common parameter vector� 2 Rd. We assume there exist an absolute
constantd, known feature maps� and f  i gi 2 [N ] , such thatP = f P(s0j s; b) = � (s0; s; b)> � ) : � 2 � g andU =
f u(s; x( i ) ) =  i (s; x( i ) )> � : � 2 � g. FollowingRusso & Van Roy(2013), we assert the following assumption.

Assumption D.1(Regularity of Linear Function Approximation). We assume the following two regularity conditions. (1)
sup(s0;s;b)2S�S�B k� (s0; s; b)k2 � 1 andsup(s;x ( i ) )2S�X ( i ) k i (s; x( i ) )k2 � 1. (2) � = f � 2 Rd : k� k2 � 1g.
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Corollary D.2 (Theoretical Analysis of Algorithm1 and Algorithm2 with Linear Function Approximations). Under the
same conditions as in Theorem3.4, it holds with probability at least1 � � that the regret for joint optimality and for fair
division property of Algorithm1 satisfy,

RegretCE ;SWM (K ) � eO(
p

d2H 4N 4K ); RegretFD (K ) � eO(
p

d2H 2N 2K ):

For Algorithm2, on the same condition as Theorem4.4, it holds with probability at least1 � � ,

SubOpt(b�; b� ) � eO(
q

H 4N 2dC?
� =K ); L FD (b� ) � eO(

p
H 2N 2d=K):

Proof of CorollaryD.2. It suf�ces to upper bound the covering number, bracketing number, and eluder dimension under
AssumptionD.1 respectively. For the upper bound of covering number and bracketing number, we introduce the following
lemma.

Lemma D.3(Speci�cation of Covering Number and Bracketing Number ). Under AssumptionD.1, it holds for all � 2 (0; 1)
that

logN (�; U; k � k1 ) � d log(3hU =�) = eO(d);

logN (�; P; k � k1;1 ) � logN [] (2�; P; k � k1;1 ) � log(4hU jSj=�) = eO(d):

Proof of LemmaD.3. For the �rst inequality in LemmaD.3, we prove it by de�nition of covering number. By the second
point in AssumptionD.1, � is a ball with radius1 in d-dimension Euclidean space, which guarantees that (Lemma 5.2 of
Vershynin(2010))

logN (�; � ; k � k1 ) � d log(3=�): (40)

Taking the� -covering of� as� � = f � j gj 2 [M ] and arbitrarily �xing i 2 [N ], it implies for anyu� (�; �) = h( i (�; �)> � ) 2 U,
there existsj 2 [M ] such that

ju� (s; x( i ) ) � u� j (s; x( i ) )j = j i (s; x( i ) )> (� � � j )j � k  i (s; x( i ) )k2k� � � j k2 � k � � � j k2 � �; (41)

where the second last inequality relies on the �rst point in AssumptionD.1 and the last inequality follows from the
de�nition of covering number. Taking supreme on the both side of(41) over(s; x( i ) ) 2 S � X ( i ) , we show thatf u� j =
� (�; �)> � j gj 2 [M ] is also a� -covering ofU under1 -norm, implying that

logN (� 0; U:k � k1 ) � d log(3=�0) = eO(d):

Hence we complete the proof of the �rst part of LemmaD.3.

As for the second part, we introduce the following key lemma to connect bracketing number with covering number, which is
proved inSen(2018).

Lemma D.4(Theorem 2.14 inSen(2018)). LetF = f m� : � 2 � g be a class of functions satisfying the following condition

jm� 1 (x) � m� 2 (x)j � d (� 1; � 2) F (x); 8x 2 X ; 8� 1; � 2 2 � ;

for some �xed functionF and metricd. Then, for any normk � k, it yields that

N [] (2� kF k; F ; k � k) � N (�; � ; d):

Under AssumptionD.1, for any two kernelsP� 1 ; P� 2 2 P , it holds that

jP� 1 (s0j s; b) � P� 2 (s0j s; b)j = j� (s0; s; b)> (� 1 � � 2)j � hU k� (s0; s; b)k2k� 1 � � 2k2

Applying LemmaD.4 with F (s0; s; b) = k� (s0; s; b)k2 and noticing thatkF k1;1 � jSj , we derive that

logN [] (2jSj�; P; k � k1;1 ) � logN (�; � ; k � k2) � d log(1=�) = eO(d);

where the last inequality follows from (40). Taking� 0 = 2 jSj� , we have that

logN [] (�
0; P; k � k1;1 ) � d log(2jSj=�0):

Noting that for all normed space(X ; k � k), it holds thatN (�; X ; k � k) � N [] (2�; X ; k � k), which concludes the proof of
LemmaD.3.



Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy

As the second step in the proof of CorollaryD.2, under AssumptionD.1 we upper bound the eluder dimension de�ned in3.3
by the following lemma.

Lemma D.5(Speci�cation of Eluder Dimension). Under AssumptionD.1, it holds for all � 2 (0; 1) that

dimE(U; � ) � eO(d); dimE(ZP ; � ) � eO(d);

whereZP is de�ned in Section3.3.

Proof of LemmaD.5. The proof is a special case of the following lemma proved inRusso & Van Roy(2013).

Lemma D.6(Proposition 12 ofRusso & Van Roy(2013)). We de�ne the function class onX as

F = f h(' (�)> � ) : � 2 Rdg � f f : X 7! Rg;

for a �xed differential functionh(�) and a feature map' (�). If we assume that0 < h L � h0(y) � hU for all y 2 R, then it
holds for all � 2 (0; 1) that

dimE(F ; � ) � O
�

dr2 log
�

r 2 +
r 2h2

U � sup� 2 � k� k2 � supx 2X k' (x)k2

� 2

��
;

wherer := hU =hL anddimE(F ; � ) is de�ned in De�nition3.3.

Now we are ready to specifydimE(U; � ) anddimE(ZP ; � ) by takingh(�) as identity function. Under AssumptionD.1, it
holds thatk� k2 � 1 for all � 2 � andk i (�; �)k2 � 1, which implies that

dimE(U; � ) � O
�

d log
�

1 +
1
� 2

��
= eO(d): (42)

The analysis for dimE(�; ZP ) needs more elaborations. Recall that for eachzP 2 Z P , it holds that

zP ((s; b; f )) =
Z

S
f (s0)P(ds0j s; b) =

Z

S
f (s0)� (s0; s; b)> � ds0 = � >

Z

S
f (s0)� (s0; s; b)ds0;

wheref is a arbitrary function inf : S 7! [0; HN ] and(s; b) 2 S � B . If we takeX = S � B � f f : S 7! [0; HN ]g and
' ((s; b; f )) =

R
S f (s0)� (s0; s; b)ds0 in LemmaD.6, we obtain that

dimE(ZP ; � ) � O

 

d log

 

1 + HN sup
(s;b)2S�B

Z

S

j� (s0; s; b)j
� 2 ds0

!!

� O (d log(1 + HN jSj)) = eO(d);

where the last inequality relies on the �rst point of AssumptionD.1.

Then we are ready to prove corollaryD.2. Based on LemmaD.3, we can upper bound the optimism parameters(36) in
Algorithm 1 as

� (1) = eO(d); � (2) = eO(H 2N 2d): (43)

We also upper bound the pessimism parameters de�ned in Theorem4.4of Algorithm 2 as

� 1 = eO(d=K); � 2 = eO(d=K): (44)

Combining LemmaD.5 and plugging them into Theorem3.4, Theorem4.4respectively, we prove CorollaryD.2.

RemarkD.7 (Generalized Linear Kernel Case). We remark that based on LemmaD.6, our conclusion can also be extended
to the setting when utility functions are generalized linear (Guo et al., 2021).
RemarkD.8 (Tabular Case). Let feature maps being the canonical basis on the factorized space, that is,� (s0; s; b) =
e(s0;s;b) ;  i (s; x( i ) ) = e(s;x ( i ) ) , andd = max fjSj 2jBj ; maxi jSjjX ( i ) jg, then AssumptionD.1 is satis�ed.
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D.2. Reproducing Kernel Hilbert Space

We consider the case when utility functionsu( i )
h and transition kernelPh are parameterized by a subset of a reproducing

kernel Hilbert space (RKHS). Speci�cally, we consider two RKHS'sH u andH P associated with two positive de�nite
kernelsKu : (S � X ( i ) ) � (S � X ( i ) ) 7! R+ andKP : (S � B � S ) � (S � B � S ) 7! R+ respectively. We denote the
corresponding feature mappings by� u : S � A (1) 7! H u and� P : S � B � S 7! H . We assume that

U =
�

h� u (�; �); f i H u : f 2 H u ; kf kH u � Ru 	
=

�
h� u (�; �); f i H u : f 2 H u

R u

	
;

P =
�

h� P (�; �; �); f i H P : f 2 H P ; kf kH P � RP 	
=

�
h� P (�; �; �); f i H P : f 2 H P

R P

	
:

By Mercer's theorem (Steinwart & Christmann, 2008), we denote the decomposition ofKu andKP as

K(x; y) =
+ 1X

j =1

� u
j � u

j (x)� u
j (y); K(x; y) =

+ 1X

j =1

� P
j � P

j (x)� P
j (y);

wherex; y 2 Y with Y = S � X ( i ) for U andY = S � B � S for P. FollowingCai et al.(2020b), we assume that both
H u andH P satisfy the following regularity conditions. For simplicity, we omit the superscriptu or P.

Assumption D.9(Regularity of RKHS). We assumeK satis�es the following two regularity conditions.
(1) It holds thatjK (x; y)j � 1; j� j (x)j � 1, and� j � 1 for anyx; y 2 Y andj 2 N.
(2) There exist a threshold
 2 (0; 1=2) and constantC1; C2 > 0 such that� j � C1 � exp (� C2j 
 ) for anyj 2 N.

Corollary D.10 (Theoretical Analysis of Algorithm1 and Algorithm2 with Kernel Function Approximations). Under the
same conditions as in Theorem3.4, it holds with probability at least1 � � that the regret for joint optimality and for fair
division property of Algorithm1 satisfy

RegretCE ;SWM (K ) . O
�
H 2NK 1=2 log2(1=
 )=
 � log1+1 =
 (2jSjRHNK=� )

�
;

RegretFD (K ) . O
�
HNK 1=2 log2(1=
 )=
 � log1+1 =
 (RHNK=� )

�
:

Besides, under the same conditions as in Theorem4.4, it holds with probability at least1 � � that the suboptimality and
of�ine FD loss of Algorithm2 satisfy

SubOpt(b�; b�; s 1) . O
�
(C?

� )1=2H 2N � K � 1=2 log(1=
 )=
 � log1=2+1 =2
 (2jSjRHNK 2=� )
�
;

L F D (b� ) . O
�
HN � K � 1=2 log(1=
 )=
 � log1=2+1 =2
 (RHNK 2=� )

�
:

Proof of CorollaryD.10. WhenU andP are both parameterized by RKHS, the covering numbers and bracketing numbers
of U andP, together with the eluder dimensiond, can be upper bounded explicitly, which are concluded in the following
two lemmas.

Lemma D.11(Covering Number and Bracketing Number with RKHS). Under AssumptionD.9, it holds for all � 2 (0; 1)
that

logN (�; U; k � k1 ) � C3 � log2(1=
 )=
 � log1+1 =
 (R=�);

logN (�; P; k � k1;1 ) � logN [] (2�; P; k � k1;1 ) � C4 � log2(1=
 )=
 � log1+1 =
 (2jSjR=�):

whereC3; C4 > 0 are absolute constants.

Proof of LemmaD.11. For notational simplicity, we omit all the superscriptsu or P without making confusion. For function
classU, we invoke LemmaI.1 (Cai et al., 2020b) which shows that

logN (�; U; k � k1 ) � C3 � log2(1=
 )=
 � log1+1 =
 (R=�);

for some absolute constantC3 > 0. In the sequel, we deal with function classP and we start from bounding the
bracketing numberN [] (2�; P; k � k1;1 ) since it upper bounds the covering numberN (�; P; k � k1;1 ). We �rst note that
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N [] (2�; P; k � k1;1 ) � N [] (2�=jSj; P; k � k1 ). Now we apply a truncation argument. Letd0 be an integer which will be
speci�ed later. DenoteeP as

eP =
�

P =
d0X

j =1

vj
p

� j � j : kvk2 � R
�

� P ;

which is in fact a linear function class overY = S � B � S with �nite dimensiond0 < 1 . Also, for anyP 2 P , we de�ne
the truncation ofP to �nite dimensional spaceeP as

eP =
d0X

j =1

hP;
p

� j � j i H
p

� j � j 2 eP:

The difference betweenP and eP under thek � k1 -norm can be bounded as

kP � ePk1 = sup
y2Y

�
�
�
�

+ 1X

j = d0 +1

hP;
p

� j � j i H
p

� j � j (y)

�
�
�
�

�
+ 1X

j = d0 +1

p
� j kPkH k

p
� j � j kH sup

y2Y
j� j (y)j � R �

+ 1X

j = d0 +1

p
� j ;

from which we denote"d0 = R �
P + 1

j = d0 +1

p
� j which is bounded later. Now letSd0 = f [egL

j ; egU
j ]gj 2 [N [] ( �= jSj ; eP ;k�k 1 )] be

a smallest�=jSj-bracket cover ofeP underk � k1 norm. By the de�nition of bracketing in SectionA, for anyP 2 P , there
exists a bracket[egL

j ; egU
j ] 2 Sd0 such thatel(y) � eP(y) � eu(y) for anyy 2 Y . As a result,

egL
j � "d0 � P(y) � egU

j + "d0 ; 8y 2 Y :

De�ne functionsgL
j = egL

j � "d0 andgU
j = egU

j + "d0 respectively, and letS be the collect of the brackets[gL
j ; gU

j ]. Then the

setS is an(�=jSj + 2 "d0 )-bracket cover ofP with jSj = jSd0 j = N [] (�=jSj; eP; k � k1 ). Thus we have that

N [] (�=jSj + 2 "d0 ; P; k � k1;1 ) � jSj = N [] (�=jSj; eP; k � k1 ):

By LemmaD.3, we know thatlogN [] (�=jSj; eP; k � k1 ) � d0 log(4d0jSj=�). Consequently, it then suf�ces to chooce a
proper integard0 such that2"d0 � �=jSj. According to LemmaI.3 (Cai et al., 2020b), by choosing

d0 =
� eC � log(1=
 )=
 � log1=
 (2jSR=�)

�
;

where
 is speci�ed in AssumptionD.9, it holds that"d0 � �=2jSj. Therefore, we conclude that

N [] (2�=jSj; P; k � k1;1 ) � d0 log(4d0jSj=�)

� C4 � log2(1=
 )=
 � log1+1 =
 (2jSjR=�):

Finally, due to the fact thatN (�; P; k � k1;1 ) � N [] (2�; P; k � k1;1 ), we can �nish the proof of LemmaD.11.

Lemma D.12(Eluder Dimemsion with RKHS). Under AssumptionD.9, there exists an absolute constantC5 > 0 such that

d = max f dimE(U; 1=K ); dimE(ZP ; 1=K )g � C5 � log2(1=
 )=
 � log1+1 =
 (RHNK ):

Proof of LemmaD.12. See Lemma C.1 inCai et al.(2020b) for a detailed proof.

Combining LemmaD.11, D.12with Theorem3.4and4.4�nishes the proof of CorollaryD.10.
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E. Proofs for Competitive Equilibrium and Social Welfare Maximization

E.1. Proof for Theorem2.4

Proof of Theorem2.4. We �rst show the inequality by induction. Forh = H , it holds that for anysH 2 S,

V ( �;� ? ( � )) ;( i )
H (sH ) = Q( �;� ? ( � )) ;( i )

H (sH ; � ?;( i )
H (� )(sH ); � H (sH ))

= max
x ( i )

H 2X ( i ) :( � p
H (sH )) > x ( i )

H � ( � p
H (sH )) > eH

u( i )
H (sH ; x ( i )

H )

� u( i )
H (sH ; � ( i )

H (sH )) = V ( �;� ) ;( i )
H (sH ):

(45)

This shows stepH . Suppose that the inequality holds for steph + 1 , i.e.,V ( �;� ? ( � )) ;( i )
h+1 (sh+1 ) � V ( �;� ) ;( i )

h+1 (sh+1 ) for any

sh+1 2 S. Then for steph, we �rst have that for any(sh ; x ( i )
h ; bh ) 2 S � X ( i ) � B ,

Q( �;� ? ( � )) ;( i )
h (sh ; x ( i )

h ; bh ) = u( i )
h (sh ; x ( i )

h ) +
Z

S
V ( �;� ? ( � )) ;( i )

h+1 (s0)Ph (ds0jsh ; bh )

� u( i )
h (sh ; x ( i )

h ) +
Z

S
V ( �;� ) ;( i )

h+1 (s0)Ph (ds0jsh ; bh )

= Q( �;� ) ;( i ) (sh ; x ( i )
h ; bh );

(46)

where the inequality follows by induction. Then we have that for anysh 2 S,

V ( �;� ? ( � )) ;( i )
h (sh ) = Q( �;� ? ( � )) ;( i )

h (sh ; � ?;( i )
h (� )(sh ); � h (sh ))

� Q( �;� ) ;( i ) (sh ; � ?;( i )
h (� )(sh ); � h (sh ))

= u( i )
h (ch ; � ?;( i )

h (� )(sh )) +
Z

S
V ( �;� ) ;( i )

h+1 (s0)Ph (ds0jsh ; � h (sh ))

= max
x ( i )

h 2X ( i ) :( � p
h (sh )) > x ( i )

h � ( � p
h (sh )) > eH

u( i )
h (sh ; x ( i )

h ) +
Z

S
V ( �;� ) ;( i )

h+1 (s0)Ph (ds0jsh ; � h (sh ))

� u( i )
h (sh ; � ( i )

h (sh )) +
Z

S
V ( �;� ) ;( i )

h+1 (s0)Ph (ds0jsh ; � h (sh ))

= V ( �;� ) ;( i )
h (sh );

(47)

where the �rst inequality follows from (46) and the second inequality follows from the de�nition of� ?;( i )
h (� ) and the fact

that both� and� ?(� ) satisfy the resource constraints. This proves the �rst conclusion of Theorem2.4. When the inequality
holds forh = 1 , from the previous proofs we know that all the inequalities become equalities, which further implies that
� h (sh ) is a competitive equilibrium with respect tof u( i )

h (sh ; �)gi 2 [N ].

E.2. Proof for Theorem2.6

Proof of Theorem2.6. We show the inequality by induction. Forh = H , it holds that for anysh 2 S,

NX

i =1

V ( � ? ( � ) ;� ) ;( i )
H (sH ) =

NX

i =1

u( i )
H (sH ; � ( i )

H (sH )) =
NX

i =1

V ( �;� ) ;( i )
H (sH ): (48)
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Now we suppose that the inequality holds for steph + 1 , i.e.,
P N

i =1 V ( � ? ( � ) ;� ) ;( i )
h (sh+1 ) �

P N
i =1 V ( �;� ) ;( i )

h (sh+1 ) for any
sh+1 2 S. Then for steph we have that for anysh 2 S,

NX

i =1

V ( � ? ( � ) ;� ) ;( i )
h (sh ) =

NX

i =1

Q( � ? ( � ) ;� ) ;( i )
h (sh ; � ( i )

h (sh ); � ?
h (� )(sh ))

=
NX

i =1

u( i )
h (sh ; � ( i )

h (sh )) +
Z

S

NX

i =1

V ( � ? ( � ) ;� ) ;( i )
h+1 (s0)Ph (ds0jsh ; � ?

h (� )(sh ))

�
NX

i =1

u( i )
h (sh ; � ( i )

h (sh )) +
Z

S

NX

i =1

V ( � ? ( � ) ;� ) ;( i )
h+1 (s0)Ph (ds0jsh ; � h (sh ))

�
NX

i =1

u( i )
h (sh ; � ( i )

h (sh )) +
Z

S

NX

i =1

V ( �;� ) ;( i )
h+1 (s0)Ph (ds0jsh ; � h (sh ))

=
NX

i =1

V ( �;� ) ;( i )
h (sh ):

(49)

where the �rst inequality follows from the choice of� ?
h in (7) and the second inequality follows from induction, proving the

�rst part of Theorem2.6. When the inequality holds forh = 1 , all the inequalities become equalities, which further implies
that� h (sh ) 2 arg maxbh 2B

P N
i =1 V ( � ? ( � ) ;� ) ;( i )

h+1 (s0)Ph (ds0jsh ; bh ), �nishing the proof.

F. Proofs for Online Learning Algorithm: Section 3

F.1. Proof for Lemma C.1

Proof of LemmaC.1. See Lemma 4.9 inCai et al.(2020b) for a detailed proof.

F.2. Proof for Lemma C.2

Proof of LemmaC.2. We decompose the left-hand side of (35) into to two terms

NX

i =1

Qk; ( i )
h (sh ; � ?;( i )

h (� k )(sk
h ); � y

h (� k )(sk
h )) � Qk; ( i )

h (sk
h ; � k; ( i )

h (sk
h ); � k

h (sk
h ))

=
NX

i =1

Qk; ( i )
h (sk

h ; � ?;( i )
h (� k )(sk

h ); � y
h (� k )(sk

h )) � Qk; ( i )
h (sk

h ; � k; ( i )
h (sk

h ); � y
h (� k )(sk

h ))

| {z }
(i)

+
NX

i =1

Qk; ( i )
h (sk

h ; � k; ( i )
h (sk

h ); � y
h (� k )(sk

h )) � Qk; ( i )
h (sk

h ; � k; ( i )
h (sk

h ); � k
h (sk

h ))

| {z }
(ii)

:

(50)

For term (i), consider that for any agenti 2 [N ], it holds that

(i) = Qk; ( i )
h (sh ; � ?;( i )

h (� k )(sh ); � y
h (� k )(sh )) � Qk; ( i )

h (sh ; � k; ( i )
h (sh ); � ?

h (� k )(sh ))

= buk; ( i )
h (sh ; � ?;( i )

h (� k )(sh )) � buk; ( i )
h (sh ; � k; ( i )

h (� k )(sh )) � 0;
(51)

where the inequality holds due to the fact that� k
h is a competitive equilibrium policy againstf buk; ( i )

h gi 2 [N ] and the de�nition
of the best responce policy� ?(� k ) for the agent� k . For term (ii), consider we have that

(ii) =
NX

i =1

Qk; ( i )
h (sk

h ; � k; ( i )
h (sk

h ); � y
h (� k )(sk

h )) � Qk; ( i )
h (sk

h ; � k; ( i )
h (sk

h ); � k
h (sk

h ))

=
NX

i =1

Z

S
V k; ( i )

h+1 (s0) bP k
h (ds0jsh ; � y

h (� k )(sh )) �
NX

i =1

Z

S
V k; ( i )

h+1 (s0) bP k
h (ds0jsh ; � k

h (sh )) � 0;

(52)
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where the inequality holds due to the greedy choice of� k
h in Line 4 of Algorithm 1. This �nished the proof.

F.3. Proof for Lemma C.3

Proof of LemmaC.3. First we introduce the following de�nition of �ltration for the later analysis.

De�nition F.1 (Filtration: Online Learning). We de�ne the time index mapt(�; �) by t(k; h) = H � (j � 1) + h for any
(k; h) 2 [K ] � [H ], which is a bijection from[K ] � [H ] to [KH ]. Then, for any(k; h) 2 [K ] � [H ], we de�neF t (k;h ) as
the� -algebra generated by

�
s1

1; a1
1; b1

1; f u1;( i )
h gi 2 [N ]; � � � ; s1

H ; a1
H ; b1

H ; f u1;( i )
H gi 2 [N ]; s2

1; a2
1; b2

1; f u2;( i )
h gi 2 [N ]; � � � ; sk

h ; ak
h ; bk

h ; f uk; ( i )
h gi 2 [N ]

�
;

which are the utility samples and state-action pairs determined beforesk
h+1 . The sequencefF t gt � 1 is a �ltration.

Also, we de�neE as the event when the true model is contained in the con�dence set of Algorithm1.

E :=
�

Ph 2 P k
h ; u( i )

h 2 U k; ( i )
h ; for all (k; h; i ) 2 [K ] � [H ] � [N ]

	
: (53)

Then we introduce the following lemma to show that eventE happens with at least1 � p probability.

Lemma F.2. For any� 2 [0; 1], if we set

� (1) =2 log(N (1=K; U; k � k1 ) � 4HN=� ) + 4(1 +
p

log(16K 2HN=� )) ;

� (2) =2H 2N 2 log(N (1=(KHN ); P; k � k1 ) � 4H=� ) + 4 HN (1 +
p

log(16K 2H=� )=2))

in Algorithm1, then with probability at least1 � �=2, eventE happens.

Proof of LemmaF.2. Let f (X � ; Y� )g� � 1 be a sequence of random elements inX � R for some measurable setX . Let
Z be a set of[0; C]-valued measurable functions with domainX for some constantC > 0: Let F = fF � g� � 1 be a
�ltration such that for all� � 1; (X 1; Y1; � � � ; X � � 1; Y� � 1; X � ) is F � � 1-measurable and there existsz� 2 Z such that
E [Y� jF � � 1] = z� (X � ) holds. The least-squares predictor givenf (X � ; Y� )gt

� =1 is de�ned as

bzt = argmin
z2Z

tX

� =1

(z (X � ) � Y� )2 :

We say that� is conditionally� -sub-Gaussian givenF � 2 F for any� � 1 if for all � 2 R,

logE [exp(�� )jF � ] � � 2� 2=2:

For any" > 0, we denote byN ("; Z ; k � k1 ) the"-covering number ofZ with respect to the supremum norm distance
kz1 � z2k1 = supx 2 R jz1(x) � z2(x)j : For any� > 0, we de�ne

Z t (� ) =
n

z 2 Z :
tX

� =1

(z (X � ) � bzt (X � ))2 � �
o

:

To utilize the concept of Eluder dimension, we introduce the following lemma.

Lemma F.3. Assume that for any� � 1; Y� � z� (X � ) is conditionally� -sub-Gaussian givenF � � 1: Then, for any" > 0
and� 2 [0; 1], with probability at least1 � � , for all t � 1; z� 2 Z t (� t (�; " )) , where

� t (�; " ) = 8 � 2 log (N ("; Z ; k � k1 ) =� ) + 4 t"
�

C +
p

� 2 log(4t(t + 1) =� )
�

:

Proof of LemmaF.3. See Proposition 6 ofRusso & Van Roy(2013) for a detailed proof.
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Then we are ready to prove LemmaF.2. It suf�ces to showu( i )
h 2 U k; ( i )

h andPh 2 P k
h respectively.

Utility Function Estimation. We denote byU as the set of all the functionsu : S �X ( i ) 7! [0; 1] (note thatX ( i ) = [0 ; 1]m ).
For any(k; h; i ) 2 [K ] � [H ] � [N ], we setY ( i )

k = uk; ( i )
h , X ( i )

k = ( sk
h ; xk; ( i )

h ), andu� (�; �) = u( i )
h (�; �). We have that

Y ( i )
� � u� (X ( i )

� ) is conditionally1=2-sub-Gaussian givenF t (k;h ) de�ned in De�nition F.1. By setting

� (1) = 2 log(N (1=K; U; k � k1 ) � 4HN=� ) + 4
�

1 +
p

log(16K 2HN=� )
�

;

in Algorithm 1, we can easily check that, using the notion in LemmaF.3, we have that

� (1) � 2 log(N (1=K; U; k � k1 ) � 4HN=� ) + 4( k � 1)=K �
�

1 +
p

log(16k(k � 1)HN=�
�

= � k � 1(�=(4HN ); 1=K );

for all k 2 [K ]. Thus by LemmaF.3, with probability at least1 � �=(4HN ), for anyk 2 [K ] we have that

u( i )
h = u? 2

(

u 2 U :
kX

� =1

�
uk; ( i )

h (s�
h ; x �; ( i )

h ) � u(s�
h ; x �; ( i )

h )
� 2

� � k � 1

)

� U k; ( i )
h ;

which givesu( i )
h 2 U k; ( i )

h for all k 2 [K ]. Now using a union bound argument overh 2 [H ] andi 2 [N ] we conclude that

with probability at least1 � �=4, for all [K ] � [H ] � [N ], we haveu( i )
h 2 U k; ( i )

h .

Transition Kernel Estimation. FollowingCai et al.(2020b), for anyP 2 P , we de�nezP : S � B � [0; HN ]S ! [0; HN ]
by

zP (s; b; f (�)) =
Z

S
f (s0)P(ds0js; b); 8(s; b; f (�)) 2 S � B � [0; HN ]S ;

andZ = f zP : P 2 Pg. For any(k; h) 2 [K ] � [H ], we setYk =
P N

i =1 V k; ( i )
h+1 (sk

h+1 ); X k = ( sk
h ; bk

h ;
P N

i =1 V k; ( i )
h+1 (�)) ,

andz� = zPh . We have thatY� � z� (X � ) is conditionallyHN=2-sub-Gaussian givenF t (k;h ) de�ned in De�nition F.1.
Also, by the de�nition ofP k

h , we have thatZ k (� ) =
�

zP : P 2 P k
h

	
. By setting

� (2) = 2H 2N 2 log(N (1=(KHN ); P; k � k1 ) � 4H=� ) + 4 HN
�

1 +
p

log(16K 2H=� )=2)
�

;

in Algorithm 1, we can check that, using the notion in LemmaF.3, we can show that

� (2) � 2H 2N 2 log(N (1=K; Z ; k � k1 ) � 4H=� ) + 4( k � 1)=K �
�

HN +
p

H 2N 2=4 � log(16k(k � 1)H=� )
�

= � k � 1(�=4H; 1=K )

for all k 2 [K ], where we leave the proof ofN ("; Z ; k � k1 ) � N ("=HN; P; k � k1 ;1) in the end. Applying LemmaF.3,
with probability at least1 � �=4H , for all k 2 [K ], we have that

z� 2 Z k (� k � 1(�=4H; 1=K )) � Z k (� );

which implies thatPh 2 P k
h . Now applying a union bound over allh 2 [H ], with probability at least1 � �=4, for all

(k; H ) 2 [K ] � [H ], we have thatPh 2 P k
h . In the sequel, we show thatN ("; Z ; k � k1 ) � N ("=HN; P; k � k1 ;1) for

any" > 0. Indeed, this is proved by using the fact that for anyzP ; zP 0 2 Z with P; P0 2 P , we have that

kzP � zP 0k1 = sup
(s;b;f ( �)) 2S�B� [0;HN ]S

�
�
�
�

Z

S
f (s0)P(ds0js; b)ds0 �

Z

S
V(s0)P0(s0js; b)ds0

�
�
�
�

� sup
(s;b;f ( �)) 2S�B� [0;HN ]S

HN �
Z

S
jP(ds0js; b) � P0(ds0js; b)j = HN � kP � P0k1 ;1 :

Thus we have proved the results for both utility function and transition kernel. Now applying a union bound we can conclude
that with the choice of� (1) , � (2) in LemmaF.2, with probability at least1 � �=2, eventE holds.
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Now based on eventE , we present the proof of the two conclusions in LemmaC.3respectively.

Conclusion 1: Optimism. The optimism result directly holds under eventE . In fact, for any(k; h) 2 [K ] � [H ], when
Ph 2 P k

h andu( i )
h 2 U k; ( i )

h , by the de�nition ofQk; ( i )
h it holds that

� �k
h (sh ; ah ; bh ) =

NX

i =1

max
u2U k; ( i )

h

u(sh ; x ( i )
h ) � uh (sh ; x ( i )

h )

+
NX

i =1

Qk; ( i )
h (sh ; x ( i )

h ) � bu( i )
h (ch ; x ( i )

h ) �
Z

S
Ph (ds0jsh ; bh )V k; ( i )

h+1 (s0)

�
NX

i =1

Qk; ( i )
h (sh ; x ( i )

h ) � bu( i )
h (ch ; x ( i )

h ) �
Z

S
Ph (ds0jsh ; bh )V k; ( i )

h+1 (s0)

=
NX

i =1

Clip [0;H � h]

� Z

S

bP k
h (ds0jsh ; bh )V k; ( i )

h+1 (s0)
�

�
Z

S
Ph+1 (ds0jsh ; bh )V k; ( i )

h+1 (s0);

(54)

where the inequality follows from eventE and the optimistic choice ofbuk; ( i )
h . Also, forh = H , the right-hand side of(54)

is zero sinceV k; ( i )
H +1 (�) = 0 . Forh < H , by the construction ofQk; ( i )

h+1 and the fact thatbuk; ( i )
h+1 (�; �) 2 [0; 1],

Qk; ( i )
h+1 (sh+1 ; x ( i )

h+1 ; bh+1 ) 2 [0; H � h]; V k; ( i )
h+1 (sh+1 ) 2 [0; H � h];

Z

S
V k; ( i )

h+1 (s0) Ph (ds0jsh ; bh ) 2 [0; H � h]:

For anysh ; sh+1 2 S, ah+1 2 A , andbh ; bh+1 2 B. Thus, it yields from (54) that

� �k
h (sh ; ah ; bh ) =

NX

i =1

Z

S

bP k
h (ds0jsh ; bh )V k; ( i )

h+1 (s0) �
Z

S
Ph+1 (ds0jsh ; bh )V k; ( i )

h+1 (s0)

= max
P 2P k

h

Z

S

NX

i =1

V k; ( i )
h+1 (s0)P(ds0jsh ; bh ) �

Z

S

NX

i =1

V k; ( i )
h+1 (s0)Ph (ds0jsh ; bh ) � 0;

(55)

where the last step follows from the de�nition of eventE and the optimistic choice ofbP k
h . Therefore,

�k
h (sh ; ah ; bh ) =

NX

i =1

uk; ( i )
h (sh ; x ( i )

h ) +
Z

S
Ph (ds0jsh ; bh )V k; ( i )

h+1 (s0) � Qk; ( i )
h (sh ; x ( i )

h ; bh ) � 0;

for all (sh ; x ( i )
h ; bh ) 2 S � X ( i ) � B . This proves the �rst conclusion of LemmaC.3.

Conclusion 2: Accuracy.First we introduce the following lemma to decompose the martingale.

Lemma F.4(Martingale Decomposition). For anyk 2 [K ], we have the following decomposition,

NX

i =1

V k; ( i )
1

�
sk

1

�
� V ( � k ;� k ) ;( i )

1

�
sk

1

�
=

HX

h=1

D k
h +

HX

h=1

� �k
h (sk

h ; ak
h ; bk

h );

where�k
h is de�ned in(38) and the termD k

h takes the form

D k
h =

Z

S

NX

i =1

�
V k; ( i )

h+1 (s0) � V ( � k ;� k ) ;( i )
h+1 (s0)

�
Ph (ds0jsk

h ; ak
h ) �

NX

i =1

V k; ( i )
h+1 (sk

h+1 ) � V ( � k ;� k ) ;( i )
h+1 (sk

h+1 )

Moreover, we haveD k
H = 0 for all k 2 [K ], andD 1

1 ; D 1
2 ; D 1

3 ; � � � ; D 1
H � 1; D 2

1 ; D 2
2 ; � � � ; is a martingale difference sequence

with respect to the �ltrationfF t gt � 1 de�ned in De�nition F.1, where each term is bounded by2HN .
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Proof of LemmaF.4. See Lemma F.1 ofCai et al.(2020b) for a detailed proof.

Upon applying LemmaF.4, we have the following decomposition:

KX

k=1

NX

i =1

V k; ( i )
1 (sk

1 ) � V ( � k ;� k ) ;( i )
1 (sk

1 ) =
KX

k=1

HX

h=1

D k
h

| {z }
(i)

+
KX

k=1

HX

h=1

NX

i =1

�
� u( i )

h (sk
h ; xk; ( i )

h ) + buk; ( i )
h (sk

h ; xk; ( i )
h )

�

| {z }
(ii)

+
KX

k=1

HX

h=1

NX

i =1

�
Qk; ( i )

h (sk
h ; xk; ( i )

h ; bk
h ) � buk; ( i )

h (sk
h ; xk; ( i )

h ) �
Z

S
Ph (ds0jsk

h ; bk
h )V k; ( i )

h+1 (s0)
�

| {z }
(iii)

:

(56)

For term (i) in (56), note thatjD k
h j � 2NH; D k

H = 0 for all (k; h) 2 [K ] � [H ], and

D 1
1 ; D 1

2 ; D 1
3 ; � � � ; D 1

H � 1; D 2
1 ; D 2

2 ; � � �

is a martingale difference sequence. Using the Azuma-Hoeffding inequality, we obtain that, with probability at least1 � �=2,
it holds that

(i) �
p

8KH 3N 2 log(2=� ): (57)

To deal with the remaining two terms, we introduce the following lemma.

Lemma F.5(Telescoping Sum). For any� > 0, and� > 0, we have

KX

k=1

sup
z;z 02Z k ( � )

jz (xk ) � z0(xk )j � 1 + C � d + 4 �
p

d�K:

whered = dim E (Z ; 1=K ).

Proof of LemmaF.5. See Lemma 5 ofRusso & Van Roy(2013) for a detailed proof.

For term (ii) in (56), under eventE and applying LemmaF.5, it holds that, withd1 := dimE(U; 1=K ),

(ii) � HN
KX

k=1

max
u2U k; ( i )

h

u(sk
h ; xk; ( i )

h ) � min
u2U k; ( i )

h

u(sk
h ; xk; ( i )

h ) � HN (1 + d1 + 4
p

d1� (1) K ); (58)

For term (iii) in (56), under eventE and applying LemmaF.5, it holds that, withd2 := dimE(ZP ; 1=K ),

(iii) � H
KX

k=1

max
P 2P k

h

Z

S

NX

i =1

V k; ( i )
h+1 (s0)P(ds0jsk

h ; bk
h ) �

Z

S

NX

i =1

V k; ( i )
h+1 (s0)Ph (ds0jsk

h ; bk
h )

� H
KX

k=1

max
P 2P k

h

Z

S

NX

i =1

V k; ( i )
h+1 (s0)P(ds0jsk

h ; bk
h ) � min

P 2P k
h

Z

S

NX

i =1

V k; ( i )
h+1 (s0)P(ds0jsk

h ; bk
h )

� H (1 + d1HN + 4
p

d2� (2) K );

(59)

Finally, combining bounds (57), (58), and (59), we conclude that with probability at least1 � � ,

KX

k=1

NX

i =1

V k; ( i )
1 (sk

1 ) � V ( � k ;� k ) ;( i )
1 (sk

1 )

�
p

8KH 3N 2 log(2=� ) + HN (1 + d1 + 4
p

d1� (1) K ) + H (1 + d1HN + 4
p

d2� (2) K )

�
p

8KH 3N 2 log(2=� ) + (1 + d)H (H + N ) + 4 HN
p

d� (1) K + 4
p

d� (2) K

�
p

8KH 3N 2 log(2=� ) + (1 + d)H (H + N ) + 4 H
q

2d(N 2� (1) + � (2) )K;

(60)

whered = max f d1; d2g and the last inequality follows from the fact that the inequality
p

x +
p

y �
p

2(x + y). This
proves the second conclusion in LemmaC.3and �nishes the proof of LemmaC.3.
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F.4. Proof for Theorem3.4: Regret for Fair Division Property

Proof. Recalling the de�nition of FD loss in (14), note that

`PE
h (� k ; sh ) = inf

x 2 SI( sh ;h )

NX

i =1

(u( i )
h (sh ; x ( i ) ) � u( i )

h (sh ; � k; ( i )
h (sh )))

�
NX

i =1

(u( i )
h (sh ; � ?;( i )

h (� k )(sh )) � u( i )
h (sh ; � k; ( i )

h (sh ))) :

Also, observe that

`SI
h (� k ; sh ) =

NX

i =1

(u( i )
h (sh ; e( i ) ) � u( i )

h (sh ; � k; ( i )
h (sh )))

�
NX

i =1

(u( i )
h (sh ; � ?;( i )

h (� k )(sh )) � u( i )
h (sh ; � k; ( i )

h (sh ))) ;

where the inequality originates from the de�nition of� ?
h in De�nition 2.2. Under the eventE de�ned in (53), following the

same procedure as in dealing with term (ii) in (56), it holds for allh 2 [H ] that,

KX

k=1

E� k `FD
h (� k ; sh ) �

NX

i =1

KX

k=1

E� k

�
e
�

u( i )
h (sh ; � ?;( i )

h (� k )(sh ) � bu( i )
h (sh ; � ?;( i )

h (� k )(sh ))
�

+
�

bu( i )
h (sh ; � ?;( i )

h (� k )(sh )) � bu( i )
h (sh ; � k; ( i )

h (sh ))
� �

+
�

bu( i )
h (sh ; � k; ( i )

h (sh )) � u( i )
h (sh ; � k; ( i )

h (sh ))
�

�
NX

i =1

KX

k=1

E� k

"

max
u2U k; ( i )

h

u(sh ; x ( i )
h ) � min

u2U k; ( i )
h

u(sh ; x ( i )
h )

#

� N ((1 + d1)N + N
p

d� (1) K );

where we remark that the �rst two terms in the �rst line are non-positive because of the de�nition of eventE and� k .
Applying the de�nition of regret for fair division propertyRegretFD (K ), we have that

RegretFD (K ) �
HX

h=1

KX

k=1

E� k `F D
h (� k ; sk

h ) � H ((1 + d1)N + N
p

d� (1) K ) � O (
p

dH 2N 2� (1) K ):

This �nishes the proof of Theorem3.4on the regret for fair division.

G. Proofs of Of�ine Learning Algorithm: Section 4

G.1. Proof of LemmaC.4

Proof of LemmaC.4. By the de�nition of suboptimality in (11) and LemmaC.2, it holds that

SubOpt(b�; b� ) =
NX

i =1

�
V ( � y ( b� ) ;� ? ( b� )) ;( i )

1;bu; bP
� bV ( � y ( b� ) ;� ? ( b� )) ;( i )

1;bu; bP
+ bV ( � y ( b� ) ;� ? ( b� )) ;( i )

1;bu; bP
� V ( b�; b� ) ;( i )

1

�
(s1)

�
NX

i =1

�
V ( � y ( b� ) ;� ? ( b� )) ;( i )

1 � bV ( � y ( b� ) ;� ? ( b� )) ;( i )

1;bu; bP
+ bV ( b�; b� ) ;( i )

1;bu; bP
� V ( b�; b� ) ;( i )

1

�
(s1):

(61)

For notational simplicity, we de�ne� h (s) :=
P N

i =1

�
V ( � y ( b� ) ;� ? ( b� )) ;( i )

1 � bV ( � y ( b� ) ;� ? ( b� )) ;( i )

1;bu; bP

�
(s) and abbreviated( � y ( b� ) ;� ? ( b� ))

h

asdh (Recall the de�nition ofd( � y ( b� ) ;� ? ( b� ))
h in (28)). To proceed further, we de�ne that

� bu
h := Edh

NX

i =1

jbu( i )
h (s; x( i ) ) � uh (s; x( i ) )j and�

bP
h := Edh k bPh (� j s; b) � Ph (� j s; b)k1: (62)
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By the de�nition of bV ( �;� ) ;( i )

h; bu; bP
, � bu

h and� bP
h , it yields that

Edh � h (sh ) = Edh

NX

i =1

�
(Ph V ( � y ( b� ) ;� ? ( b� ))

h+1 � Ph bV ( � y ( b� ) ;� ? ( b� ))
h+1 + Ph bV ( � y ( b� ) ;� ? ( b� ))

h+1 � bPh bV ( � y ( b� ) ;� ? ( b� ))

h+1 ;( bu; bP )
)(sh ; bh )

+ ( u( i )
h � bu( i )

h )(sh ; x ( i )
h )

�

� Edh

NX

i =1

� Z

S
(V ( � y ( b� ) ;� ? ( b� ))

h+1 � bV ( � y ( b� ) ;� ? ( b� ))

h+1 ;( bu; bP )
)Ph (dsh+1 j sh ; bh )

�
+ HN�

bP
h + � bu

h

= Edh +1 � h+1 (sh+1 ) + HN�
bP
h + � bu

h

(63)

where the inequality is based on the fact that both the true and estimated value functions are bounded by[0; H ]. Hence, by
telescoping indexh over[H ], it holds that

� 1(s1) =
HX

h=1

HN�
bP
h + � bu

h �
HX

h=1

s

E� h

�
dh

� h

� 2�
HN

q
� bP

h +
q

� bu
h

�

�
q

C?
�

� HX

h=1

HN
q

� bP
h +

q
� bu

h

�
;

where the �rst inequality relies on Cauchy-Schwarz inequality and the de�nition of� bP
h and� bu

h in LemmaC.4, and the second
inequality relies on the de�nition ofC?

� in (30). Plugging� 1(s1) into (61), we conclude the proof of LemmaC.4.

G.2. Proof of LemmaC.5

Proof of LemmaC.5. According to the choice ofbP in Algorithm 1, we �rst have that

NX

i =1

bV ( b�; b� ) ;( i )

1;( bP ; bu)
(s1) � V ( b�; b� ) ;( i )

1 (s1) �
NX

i =1

bV ( b�; b� ) ;( i )
1;(P; bu) (s1) �

NX

i =1

V ( b�; b� ) ;( i )
1 (s1); (64)

since bP = f bPh gh2 [H ] is the global pessimistic estimator inPh;� 2 andPh 2 P h;� 2 . Next, we show by induction that the
right-hand side of (64) is non-positive. For steph = H , we have that

NX

i =1

bV ( b�; b� ) ;( i )
H; (P; bu) (sH ) �

NX

i =1

V ( b�; b� ) ;( i )
H (sH ) =

NX

i =1

bu( i )
H (sH ; b� ( i )

H (sH )) �
NX

i =1

u( i )
H (sH ; b� ( i )

H (sH )) � 0; 8sH 2 S;

sinceu( i )
H 2 U ( i )

H;� 1
andbu( i )

H is pessimistic estimator for eachi 2 [N ]. Now suppose that inequality

NX

i =1

bV ( b�; b� ) ;( i )
h+1 ;(P; bu) (sh+1 ) �

NX

i =1

V ( b�; b� ) ;( i )
h+1 (sh+1 ) � 0; 8sh+1 2 S;

holds for steph + 1 . Then for steph, we have that

NX

i =1

bV ( b�; b� ) ;( i )
h; (P; bu) (sh ) �

NX

i =1

V ( b�; b� ) ;( i )
h (sh ) =

NX

i =1

bu( i )
h (sh ; b� ( i )

h (sh )) �
NX

i =1

u( i )
h (sh ; b� ( i )

h (sh ))

| {z }
(i)

+
Z

S

 
NX

i =1

bV ( b�; b� ) ;( i )
h+1 ;(P; bu) (s

0) �
NX

i =1

V ( b�; b� ) ;( i )
h+1 (s0)

!

Ph (ds0jsh ; b� h (sh ))

| {z }
(ii)

; 8sh 2 S;

where(i) � 0 relies on the fact thatu( i )
h 2 U ( i )

h;� 1
andbu( i )

h is pessimistic estimator for eachi 2 [N ]. By induction, we prove
that(ii) � 0. Thus we conclude that the right-hand side of (64) is non-positive.
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G.3. Missing Proofs of TheoremC.6

Before we start the proof of TheoremC.6, we introduce the following lemma, which plays the key role in sharpening the
convergence rate in the analysis for both estimated kernels and utility functions.

Lemma G.1(Uniform Bernstein Inequality with Covering Number). For any given functional classF � f f : X 7! Rg,
whereX is a probability space. If we assume that the� -covering number ofF under in�nity-norm is �nite, that is,
M := N (�; F ; k � k1 ) < 1 and we also assume that there exists an absolute constant such thatjf (X )j � R a.s., then the
following inequality holds for allf 2 F with probability at least1 � � ,

�
�
�
�
�
1
n

nX

i =1

f (X i ) � E[f (X )]

�
�
�
�
�

� 2� +

r
2V[f (X )] log(M=� )

n
+ 4

r
R� log(M=� )

n
+

2R log(M=� )
3n

;

whereX; X 1; :::; X n are all i.i.d. samples on the probability spaceX .

Proof of LemmaG.1. To obtain this lemma, we adapted Bernstein inequality with the technique dealing with covering
number. See AppendixH.1 for detailed proof.

Proof of TheoremC.6. We prove the theorem by the following lemmas, which are adapted fromXie et al.(2021) are based
on LemmaG.1. For notational simplicity, we de�nekf k2;� as

p
E� [jf j2].

Lemma G.2. For any(i; h ) 2 [N ] � [H ], it holds with probability at least1 � �=NH that anybu 2 U ( i )
h;� 1

satis�es

�
�
�
�






 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

�





 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;D h

�
�
�
� �

r
82 log(N (1=K; U; k � k1 )NH=� )

K
:

Proof of LemmaG.2. See AppendixH.2 for a detailed proof.

Lemma G.3. For any(i; h ) 2 [N ] � [H ], it holds with probability at least1 � �=NH that anybu; eu 2 U ( i )
h;� 1

satisfy

�
�
�
�






 bu(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;� h

�





 eu(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;� h

�





 bu(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;D h

+





 eu(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;D h

�
�
�
�

�





 bu(s; x( i ) ) � eu(s; x( i ) )








2;� h

�

r
64 log(N (1=K; U; k � k1 )NH=� )

K
+

262 log(N (1=K; U; k � k1 )NH=� )
3K

:

Proof of LemmaG.3. See AppendixH.3 for a detailed proof.

Lemma G.4(Concentration). By setting

� 1 =
log(N (1=K; U; k � k1 ) � NH=� )

K
;

it holds with probability at least1 � �=4 that for any(i; h ) 2 [N ] � [H ], u( i )
h 2 U ( i )

h;� 1
.

Proof of LemmaG.4. This is a trivial conclusion since we note thatu( i )
h (s�

h ; x �; ( i )
h ) = u�; ( i )

h .

Lemma G.5(Accuracy). It holds with probability at least1 � �=4 that, for any(i; h ) 2 [N ] � [H ] andu 2 U ( i )
h;� 1

,






 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;� h

�
225 log(N (1=K; U; k � k1 ) � NH=� )

K
:
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Proof of LemmaG.5. By LemmaG.3with bu = u andeu = u( i )
h , it holds that with probability at least1 � �=4NH , for any

u 2 U, 




 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;� h

�
1
K

KX

� =1

�
u(s�

h ; x �; ( i )
h ) � u( i )

h (s�
h ; x �; ( i )

h )
� 2

+
262 log(N (1=K; U; k � k1 )4NH=� )

3K

+





 bu(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

�

r
64 log(N (1=K; U; k � k1 )4NH=� )

K
:

Now for any(i; h ) 2 [N ] � [H ], we restrictu 2 U ( i )
h;� 1

to obtain that






 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;� h

� � 1 +





 bu(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

�

r
64 log(N (1=K; U; k � k1 )4NH=� )

K

+
262 log(N (1=K; U; k � k1 )4NH=� )

3K

�





 bu(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

�

r
64 log(N (1=K; U; k � k1 )4NH=� )

K

+
90 log(N (1=K; U; k � k1 )4NH=� )

K
:

(65)

Solving the quadratic inequality in (65), we have that






 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

�

r
225 log(N (1=K; U; k � k1 )4NH=� )

K
:

Finally, applying a union bound argument over(i; h ) 2 [N ] � [H ], we �nish the proof of LemmaG.5.

This proves that with probability at least1 � �=4, we have� bu
h � 225 log(N (1=K; U; k � k1 ) � 4NH=� )=K . Combining this

result with LemmaG.4, we �nishes the proof of TheoremC.6.

G.4. Missing Proofs of TheoremC.7

Proof of TheoremC.7. As the �rst part of TheoremC.7, we introduce the the following key lemma to show that the event

E1 :=
n

ED h k bPMLE
h (� j s; b) � Ph (� j s; b)k2

1 � C0log(N [] (1=K; P; k � k1;1 )H=� )=K; for all h 2 [H ]
o

happens with probability at least1 � �=4, whereC0 is an absolute constant.

Lemma G.6. According to Algorithm2 , then eventE1 happens with probability at least1 � �=4.

Proof of LemmaG.6. For the simiplicity of notation, we denote bygh ( bP)(s; b) := k bP(� j s; b) � Ph (� j s; b)k2
1. By the

following lemma, we show that MLE estimation in Algorithm2) can converge at a negative square root rate.

Lemma G.7(MLE Estimation Guarantee). According to Algorithm2 , then event

E2 :=
n

E� h gh ( bPMLE
h ) � c0log(N [] (1=K; P; k � k1;1 )H=� )=K; for all h 2 [H ]

o

happens with probability at least1 � �=8, wherec0 is an absolute constant.

Proof of LemmaG.7. See AppendixH.3 for detailed proof.

Notice that the gap between LemmaG.6and LemmaG.7 can be bridged by concentration analysis which relies on the
adapted Bernstein inequality in LemmaG.1. We introduce the following lemma.



Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy

Lemma G.8(Bernstein Inequality with Union Bound I). According to Algorithm2, if we de�ne the event

E3 :=
n�

�[ED h � E� h ]gh ( bPMLE
h )

�
� � c00log(N [] (1=K; P; k � k1;1 )H=� )=K; for all h 2 [H ]

o
;

thenE2 \ E3 happens with probability at least1 � �=8, wherec00is an absolute constant.

Proof of LemmaG.8. See AppendixH.3 for detailed proof.

Since it holds that
E� h gh ( bPMLE

h ) � ED h gh ( bPMLE
h ) + [ ED h � E� h ]gh ( bPMLE

h );

LemmaG.6is the direct consequence of LemmaG.7and LemmaG.8.

With LemmaG.6, the last part of the proof of TheoremC.7 is to upper boundsup2 [H ] � bP
h . Recall that we denote by

gh ( bP)(s; b) := k bP(� j s; b) � Ph (� j s; b)k2
1. On the eventE1, we decompose� bP

h as follows.

�
bP
h = ED h gh ( bPMLE

h ) + [ E� h � ED h ]gh ( bPh ) + ED h (gh ( bP) � gh ( bPMLE
h ))

� 2ED h gh ( bPMLE
h ) + [ E� h � ED h ]gh ( bPh ) + 2 ED h k bPh (� j s; b) � bPMLE

h (� j ; s; b)k2
1

� 2ED h gh ( bPMLE
h ) + [ E� h � ED h ]gh ( bPh ) + 2 � 2

� 4� 2 + [ E� h � ED h ]gh ( bPh );

(66)

where the �rst inequality relies on the fact that(a + b)2 � 2(a2 + b2) and the last inequality relies on the de�nition ofE1.
Hence it suf�ces to upper bound the second term in(66). Motivated byUehara & Sun(2021) and the proof of LemmaG.2,
we prove the following lemma based on the adapted Bernstein inequality in LemmaG.1.

Lemma G.9(Bernstein Inequality with Union Bound II). According to Algorithm2 and selecting
� 2 = C0log(N [] (1=K; P; k � k1;1 )=� )=K , if we de�ne the event

E4 :=
� �

� [ED h � E� h ]gh ( bPh )
�
� � C00log(N [] (1=K; P; k � k1;1 )H=� )=K; for all h 2 [H ]

	
;

thenE1 \ E4 happens with probability at least1 � �=8, whereC00is an absolute constant.

Proof. See AppendixH.3 for detailed proof.

Apply LemmaH.3 and LemmaG.6. Based onE1 \ E2 \ E3 and the selection of� 2, then

sup
h2 [H ]

�
bP
h � (c0+ c00+ C00)log(N [] (1=K; P; k � k1;1 )H=� )=K;

which concludes the proof for TheoremC.7.

G.5. Proof for Theorem4.4: Of�ine Fair Division Loss

Proof. Similar to the proof for Theorem3.4, the following two inequalities originate from the de�nition of� ?
h in (4).

`PE
h (b�; s h ) = inf

x 2PE (sh ;h )

NX

i =1

�
u( i )

h (sh ; x ( i ) ) � u( i )
h (sh ; b� ( i )

h (sh ))
�

�
NX

i =1

�
u( i )

h (sh ; � ?;( i )
h (b� )(sh )) � u( i )

h (sh ; b� ( i )
h (sh ))

�
:

Also, observe that

`SI
h (b�; s h ) =

NX

i =1

�
u( i )

h (sh ; e( i ) ) � u( i )
h (sh ; b� ( i )

h (sh ))
�

�
NX

i =1

�
u( i )

h (sh ; � ?;( i )
h (b� )(sh )) � u( i )

h (sh ; b� ( i )
h (sh ))

�
;
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By the de�nition of of�ine FD loss de�ned in (24), it holds that

L FD �
NX

i =1

HX

h=1

E� h

�
u( i )

h (sh ; � ?;( i )
h (b� )(sh )) � bu( i )

h (sh ; � ?;( i )
h (b� )(sh ))

�

+
�

bu( i )
h (sh ; � ?;( i )

h (b� )(sh )) � bu( i )
h (sh ; b� ( i )

h (sh ))
�

+
�

bu( i )
h (sh ; b� ( i )

h (sh )) � u( i )
h (sh ; b� ( i )

h (sh ))
�

By the de�nition of b� and the eventE0 de�ned in and(C.6) de�ned in TheoremC.6, it further holds with at probability at
least1 � � that

L FD �
NX

i =1

HX

h=1

E� h jbu( i )
h (sh ; b� ( i )

h (sh )) � u( i )
h (sh ; b� ( i ) (sh )) j

�
NX

i =1

HX

h=1

E� h

q
jbu( i )

h (sh ; b� ( i )
h (sh )) � u( i )

h (sh ; b� ( i ) (sh )) j2

� O (HN
p

log(N (1=K 2; U; k � k1 ) � NH=� )=K );

where the second inequality relies on the Cauchy-Schwarz inequality and the last inequality originates from TheoremC.6.
Hence we conclude the proof for Theorem4.4.

H. Missing Proofs of Auxillary Lemmas

H.1. Proofs for LemmaG.1

Proof of LemmaG.1. Denote one of the� -covering ofF asF � = f f i gi 2 [M ] � F , whereM = N (�; F ; k � k1 ). Then
applying Bernstein inequality with union bound on theF � , it holds with probability at least1 � � ,

�
�
�
�
�
1
n

nX

i =1

g(X i ) � E[g(X )]

�
�
�
�
�

�

r
2V[g(X )] log(M=� )

n
+

2R log(M=� )
3n

; (67)

for all g 2 F � . By the de�nition of covering number, for anyf 2 F , there existsg 2 F � such thatkf � gk1 � � . It then
yields that

�
�
�
�
�
1
n

nX

i =1

f (X i ) � E[f (X )]

�
�
�
�
�

�

�
�
�
�
�
1
n

nX

i =1

(f (X i ) � g(X i ))

�
�
�
�
�
+

�
�
�
�
�
1
n

nX

i =1

g(X i ) � E[g(X )]

�
�
�
�
�
+ jE[g(X )] � E[f (X )]j

� 2� +

r
2V[g(X )] log(M=� )

n
+

2R log(M=� )
3n

:

(68)

Notice that
�
�
�
�
�

r
2V[f (X )] log(M=� )

n
�

r
2V[g(X )] log(M=� )

n

�
�
�
�
�

�

s �
�
�
�
2V[f (X )] log(M=� )

n
�

2V[g(X )] log(M=� )
n

�
�
�
�

=

r
2 log(M=� )

n
�
p

jV[f (X )] � V[g(X )]j;

(69)

where the �rst inequality is based on the basic inequalityj
p

x �
p

yj �
p

jx � yj for two absolute variablesx; y. What
remains is to upper bound the difference of variance in (69).

jV[f (X )] � V[g(X )]j =
�
� � E[(f (X ))2] � (E[f (X )])2�

�
�
E[(g(X ))2] � (E[g(X )])2� �

�

=
�
�E

�
(f (X ) � E[g(X )])2 � (g(X ) � E[f (X )])2� ��

� E[jf (X ) � E[g(X )] � g(X ) + E[f (X )]j � j f (X ) � E[g(X )] + g(X ) � E[f (X )]j]

� 2� � 4R = 8R�:

(70)
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Plugging (69) and (69) into (68), it holds that for allf 2 F with probability at least1 � � ,

�
�
�
�
�
1
n

nX

i =1

f (X i ) � E[f (X )]

�
�
�
�
�

� 2� +

r
2V[f (X )] log(M=� )

n
+

r
2 log(M=� )

n
�
p

8R� +
2R log(M=� )

3n

= 2 � +

r
2V[f (X )] log(M=� )

n
+ 4

r
R� log(M=� )

n
+

2R log(M=� )
3n

;

which concludes the proof of LemmaG.1.

H.2. Proofs for LemmaG.2

Proof of LemmaG.2. The proof is adapted from Lemma A.3 inXie et al.(2021). We �rst apply LemmaG.1with � = 1=K
over function classU( i )

h = f (u � u( i )
h )2 : u 2 Ug to obtain that

�
�
�
�






 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;� h

�





 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;D h

�
�
�
�

=

�
�
�
�
�
E� h ju(s; x( i ) ) � u( i )

h (s; x( i ) )j2 �
1
K

KX

� =1

(u(s�
h ; x �; ( i )

h ) � u( i )
h (s�

h ; x �; ( i )
h ))2

�
�
�
�
�

�

vu
u
u
t 4V � h

� �
u(s; x( i ) ) � u( i )

h (s; x( i ) )
� 2

�
log(N (1=K; U( i )

h ; k � k1 )NH=� )

K
+

8 log(N (1=K; U( i )
h ; k � k1 )NH=� )
3K

+
8 log(N (1=K; U( i )

h ; k � k1 )NH=� )
K

+
2
K

�





 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

�

s
16 log(N (1=K; U( i )

h ; k � k1 )NH=� )
K

+
38 log(N (1=K; U( i )

h ; k � k1 )NH=� )
3K

�





 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

r
32 log(N (1=K; U; k � k1 )NH=� )

K
+

76 log(N (1=K; U; k � k1 )NH=� )
3K

;

(71)
where in the �rst and second inequality we use the fact thatu � 1 for all u 2 U and in the last inequality we use the fact that
N (1=K; U( i )

h ; k � k1 ) � [N (1=K; U; k � k1 )]2. Here we markU( i )
h andU in red to highlight their difference. Now on the

one hand, by basic inequalityja � bj2 � j a2 � b2j, we know from inequality (71) that

�
�
�
�






 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

�





 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;D h

�
�
�
�

�
r 





 u(c; x( i ) ) � u( i )

h (c; x( i ) )







2;� h

�
4

r
32 log(N (1=K; U; k � k1 )NH=� )

K
+

r
76 log(N (1=K; U; k � k1 )NH=� )

3K
:

(72)
On the other hand, by another basic inequalityja � bj � j a � b2=aj, we know from inequality (71) that

�
�
�
�






 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

�





 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;D h

�
�
�
�

�

r
32 log(N (1=K; U; k � k1 )NH=� )

K
+

76 log(N (1=K; U; k � k1 )NH=� )

3K �





 u(c; x( i ) ) � u( i )

h (c; x( i ) )







2;� h

:
(73)
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Thus combining (72) and (73) we obtain that

�
�
�
�






 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

�





 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;D h

�
�
�
�

� min

( r 




 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

�
4

r
32 log(N (1=K; U; k � k1 )NH=� )

K
+

r
76 log(N (1=K; U; k � k1 )NH=� )

3K
;

r
32 log(N (1=K; U; k � k1 )NH=� )

K
+

76 log(N (1=K; U; k � k1 )NH=� )

3K �





 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

)

:

(74)
Denote� = ku(s; x( i ) ) � u( i )

h (s; x( i ) )k2;� h and optimize over� > 0 in (74), we obtain that

�
�
�
�






 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;� h

�





 u(s; x( i ) ) � u( i )

h (s; x( i ) )







2;D h

�
�
�
�

� max
�> 0

min

(
p

� �
4

r
32 log(N (1=K; U; k � k1 )NH=� )

K
+

r
76 log(N (1=K; U; k � k1 )NH=� )

3K
;

r
32 log(N (1=K; U; k � k1 )NH=� )

K
+

76 log(N (1=K; U; k � k1 )NH=� )
3K � �

)

� min
�> 0

max

(
p

� �
4

r
32 log(N (1=K; U; k � k1 )NH=� )

K
+

r
76 log(N (1=K; U; k � k1 )NH=� )

3K
;

r
32 log(N (1=K; U; k � k1 )NH=� )

K
+

76 log(N (1=K; U; k � k1 )NH=� )
3K � �

)

�

r
82 log(N (1=K; U; k � k1 )NH=� )

K
;

where we choose� =
p

log(N (1=K; U; k � k1 )NH=� )=K . Here we markmax�> 0 min and � min �> 0 max in red
to highlight their difference. This �nishes the proof of LemmaG.2.

H.3. Proofs for LemmaG.3

Proof of LemmaG.3. The proof is adapted from Lemma A.4 inXie et al.(2021). We �rst note that we can rewrite






 bu(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;D h

�





 eu(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;D h

=
1
K

KX

� =1

�
bu(s�

h ; x �; ( i )
h ) � eu(s�

h ; x �; ( i )
h )

� �
bu(s�

h ; x �; ( i )
h ) + eu(s�

h ; x �; ( i )
h ) � 2u( i )

h (s�
h ; x �; ( i )

h )
�

:
(75)
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By (75), we apply LemmaG.1with � = 1=K and function classUy;( i )
h = f (bu � eu)( bu + eu � 2u( i )

h ) : bu; eu 2 Ug to obtain that
�
�
�
�






 bu(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;� h

�





 eu(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;� h

�





 bu(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;D h

+





 eu(s; x( i ) ) � u( i )

h (s; x( i ) )







2

2;D h

�
�
�
�

�

vu
u
t 4V � h

h�
bu(s; x( i ) ) � eu(s; x( i ) )

� �
bu(s; x( i ) ) + eu(s; x( i ) ) � 2u( i )

h (s; x( i ) )
�i

log(N (1=K; Uy;( i )
h ; k � k1 )NH=� )

K

+
16 log(N (1=K; Uy;( i )

h ; k � k1 )NH=� )
3K

+
16 log(N (1=K; Uy;( i )

h ; k � k1 )NH=� )
K

+
2
K

;

�

vu
u
t 16V � h

h�
bu(s; x( i ) ) � eu(s; x( i ) )

� �
bu(s; x( i ) ) + eu(s; x( i ) ) � 2u( i )

h (s; x( i ) )
�i

log(N (1=K; U; k � k1 )NH=� )

K

+
64 log(N (1=K; U; k � k1 )NH=� )

3K
+

64 log(N (1=K; U; k � k1 )NH=� )
K

+
2
K

;

�





 bu(s; x( i ) ) � eu(s; x( i ) )








2;� h

�

r
64 log(N (1=K; U; k � k1 )NH=� )

K
+

262 log(N (1=K; U; k � k1 )NH=� )
3K

;

where in the �rst and second inequality we use the fact thatu � 1 for all u 2 U and the fact thatN (1=K; Uy;( i )
h ; k �

k1 ) � [N (1=K; U; k � k1 )]4. Here we markUy;( i )
h andU in red to highlight their difference. This �nishes the proof of

LemmaG.3.

Proof of LemmaG.7. Before we proceed, we need introduce some concepts to help characterize the convergence rate of
MLE estimator, which follows fromGeer et al.(2000); Uehara & Sun(2021).

We de�ne the modi�ed function class ofPh :

Ph =

( s
bP + Ph

2

�
�
� bP 2 P

)

:

Given a function classF , let N [] (�; F ; k � k2;� h ) be the bracketing number ofF w.r.t the normk � k2;� h given by

kf k2;� h = E� h

� Z
(f (s0j s; b))2 ds0

� 1=2

:

Then, the entropy integral ofF is given by

JB (�; F ; k � k2;� h ) = max

( Z �

� 2 =2

� q
logN [] (u; F ; k � k2;� h )

�
du; �

)

:

We also de�ne the localized class ofPh :

Ph (� ) =
n

bP 2 Ph : E� h

h
h2

�
bP(� j s; b)kPh (� j s; b)

�i
� � 2

o
;

whereh
�

bP(� j s; b)kPh (� j s; b)
�

denotes Hellinger distance de�ned by

s

0:5
Z � q

bP (s0j s; b) �
p

Ph (s0j s; b)
� 2

ds0:

Then we introduce the following lemma (Theorem 4 inUehara & Sun(2021)) to characterize the property of MLE estimator.
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Lemma H.1 (MLE guarantee with general function approximation). We take a functionGh (� ) : [0; 1] ! R s.t. Gh (� ) �
JB [�; Ph (� ); k � k2;� h ] andGh (� )=�2 is a non-increasing function w.r.t� . Then, letting� h be a solution to

p
K� 2 � c0Gh (� )

w.r.t � , wherec0 is an absolute constant. With probability at least1 � � , we have

E� h

� 




 bPMLE

h (� j s; b) � Ph (� j s; b)







2

1

�
� c1

n
� h +

p
log (c2=� ) =K

o2
:

Proof. Please refer to Theorem 4 inUehara & Sun(2021).

Our next step is to show that selecting� h = c2
p

logN [] (1=K; P; k � k1;1 )=K in LemmaH.1 suf�ces to prove LemmaG.7.
First we show the following facts to discuss the relationship of bracketing numbers of different function classes.

Lemma H.2. It holds that for all� � 0, N [] (�; Ph (� ); k � k2;� h ) � N [] (2� 2; P; k � k1;1 ):

Proof. NoticingN [] (�; Ph (� ); k � k2;� h ) � N [] (�; Ph ; k � k2;� h ); it suf�ces to prove that

N [] (�; Ph ; k � k2;� h ) � N [] (2� 2; P; k � k1;1 ):

Take the4� 2-brackets ofP asBP = f (PU
j ; PL

j )gj 2 [M ], whereM = N [] (4� 2; P; k�k1;1 ). Then for anyeP0 2 P =
q

P0 + Ph
2 ,

there existsj 2 [M ], s.t. PL
j � P0 � PU

j andkPL
j � PU

j k1;1 � 4� 2. Hence,
q

P L
j + Ph

2 � eP0 �
q

P U
j + Ph

2 . It also holds
that,














s
PL

j + Ph

2
�

s
PU

j + Ph

2














2;� h

= E� h

2

6
4

Z

S

0

@

s
PL

j + Ph

2
�

s
PU

j + Ph

2

1

A

2

ds0

3

7
5

1=2

� E� h

" Z

S

�
�
�
�
�
PL

j + Ph

2
�

PU
j + Ph

2

�
�
�
�
�
ds0

#1=2

�

r
1
2




 PU

j � PL
j






1;1
� �;

where the �rst inequality relies on the basic inequalityj
p

a �
p

bj �
p

ja � bj.

Hence,
�� q

P L
j + Ph

2 ;
q

P U
j + Ph

2

��

j 2 [M ]
are also the� -brackets ofPh , which concludes the proof of LemmaH.2.

In LemmaH.2, we chooseGh (� ) = ( � � � 2=2)
p

logN [] (� 4=2; P; k � k1;1 ), which satis�es that (because of LemmaH.2)

Gh (� ) � (� � � 2=2)
q

logN [] (� 2=2; Ph (� ); k � k2;� h )

� JB (�; Ph (� ); k � k2;� h );
(76)

when we assume thatlogN [] (� 2=2; Ph (� ); d) � 2.

It is easy to �nd thatG(� )=�2 is non-increasing function. Assuming thatK > logN [] (� 2=16; P; k � k1;1 ) and solvingp
K� 2 � c0Gh (� ), we derive the feasible solution region

(

� 2 [0; 1] : � �
c0p

K � c0=2
p

logN [] (� 4=2; P; k � k1;1 )

)

:

Then there exists an absolute constantc2, s.t. � h = c2
p

logN [] (1=K 2; P; k � k1;1 )=K falls into such a feasible region.
Hence, by LemmaH.1, there exists a constantc0, s.t.

E� h

� 




 bPMLE

h (� j s; b) � Ph (� j s; b)







2

1

�
� c0log(N [] (1=K 2; P; k � k1;1 )=� )=K:
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Taking a union bound forh 2 [H ] and rescaling� , we obtain that

sup
h2 [H ]

E� h

� 




 bPMLE

h (� j s; b) � Ph (� j s; b)







2

1

�
� c0log(N [] (1=K 2; P; k � k1;1 )H=� )=K;

which concludes the proof of LemmaH.3.

Proof of LemmaG.8. Motivated byUehara & Sun(2021), we need to consider the localized class and apply Bernstein
inequality to sharpen the convergence rate. We de�ne the estimator localized class as

PLoc 1
h :=

n
bP 2 P : E� h gh ( bP) � c0log(N [] (1=K 2; P; k � k1;1 )H=� )=K

o
: (77)

Then we de�ne the corresponding function class

F 1
h := fk bP(� j s; b) � Ph (� j s; b)k2

1 : bP 2 P Loc1
h g: (78)

We denote byM 1(� ) := N (�; F 1
h ; k � k1;1 ) and notice thatbPMLE

h 2 P Loc 1
h for all h 2 [H ] on the eventE2 de�ned in

LemmaG.7. Applying LemmaG.1on the function classF 1
h with the union bound overh 2 [H ], it holds for allh 2 [H ]

and bP 2 P Loc 1
h with probability at least1 � �=16 that

�
�(ED h � E� h )[gh ( bP)]

�
� � 2� +

s
2V � h [gh ( bP)] log(M 1(� )H=� )

K
+ 8

r
� log(M 1(� )=� )

n
+

8 log(M 1(� )=� )
3K

� 2� +

s
8E� h [gh ( bP)] log(M 1(� )H=� )

K
+ 8

r
� log(M 1(� )H=� )

K
+

8 log(M 1(� )H=� )
3K

� 2� +

p
8c0log(N [] (1=K; P; k � k1;1 )H=� ) � log(M 1(� )H=� )

K

+ 8

r
� log(M 1(� )H=� )

K
+

8 log(M 1(� )H=� )
3K

;

(79)

where the �rst inequality also relies on the fact thatsupbP 2P kgh (P)k1 � supbP 2P (k bPk1;1 + kPh k1;1 )2 � 4. To select a
proper� , we de�ne a larger function classF 0

h as follows,.

F 0
h := fk bP(� j s; b) � Ph (� j s; b)k2

1 : bP 2 Pg: (80)

By the following lemma, we characterize the relationship ofF 0
h andF 1

h .

Lemma H.3. It holds for all h 2 [H ] thatN (�; F 0
h ; k � k1 ) � N [] (�; P; k � k1;1 ):

Proof. For any bP 2 P , there existsPCover
i 2 f PCover

j gj 2 [M ] � P , whereM = N (�; P; k �k1;1 ) , s.t.kPCover
i � bPk1;1 � � .

Notice that �
�
�
h
kPCover

i � Ph k2
1 � k bP � Ph k2

1

i
(s; b)

�
�
� � 2

�
�
�
h
kPCover

i � Ph k1 � jk bP � Ph k1

i
(s; b)

�
�
�

� 2
�
�
�
h
kPCover

i � bPk1

i
(s; b)

�
�
�

� 2kPCover
i � bPk1;1

� 2kPCover
i � bPk1;1 � 2�:

(81)

Taking supreme overS � B , we obtain that






h
kPCover

i � Ph k2
1 � k bP � Ph k2

1

i 






1
� 2� , which implies that

N (2�; F 0
h ; k � k1 ) � N (�; P; k � k1;1 ):

Notice that covering number can be upper bounded by bracketing number, that is,

N (2�; F 0
h ; k � k1 ) � N (�; P; k � k1;1 ) � N [] (2�; P; k � k1;1 );

which concludes the result of LemmaH.3.
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SinceM 1(� ) � N (�; F 0
h ; k � k1 ) � N [] (�; P; k � k1;1 ), selecting a proper� = 1=K 2, we have with probability at least

1 � �=16 that
sup

h2 [H ]
sup

bP 2P Loc 1
h

j[ED h � E� h ]gh ( bP)j � c00log(N [] (1=K 2; P; k � k1;1 )H=� )=K;

wherec00is an absolute constant. Hence we �nish the proof of LemmaG.8.

Proof of LemmaG.9. This proof is more complicated than the proof of LemmaG.8. On the eventE1 de�ned in Lemma
G.6, we de�ne the estimator localized class as

PLoc 2
h := f bP 2 P h;� 2 : ED gh ( bP) � � 2g: (82)

We also de�ne the function class

F 2
h := fk bP(� j s; b) � Ph (� j s; b)k2

1 : bP 2 P Loc2
h ; for all h 2 [H ]g: (83)

We denote byM 2(� ) := N (�; F 2
h ; k � k1;1 ) and notice thatbPh 2 P Loc 2

h on the eventE1 de�ned in LemmaG.6. Applying
LemmaG.1 on F 2

h with union bound overh 2 [H ], we have for allh 2 [H ] and bP 2 P Loc 2
h with probability at least

1 � �=16 that

�
�(ED h � E� h )[gh ( bP)]

�
� � 2� +

s
2V � h [gh ( bP)] log(M 2(� )H=� )

K
+ 8

r
� log(M 2(� )=� )

n
+

8 log(M 2(� )=� )
3K

� 2� +

s
8E� h [gh ( bP)] log(M 2(� )H=� )

K
+ 8

r
� log(M 2(� )H=� )

K
+

8 log(M 2(� )H=� )
3K

� 2� +

s
8(j[ED h � E� h ]gh ( bP)j + � 2)

K
log(M 2(� )H=� )

+ 8

r
� log(M 2(� )H=� )

K
+

8 log(M 2(� )H=� )
3K

:

(84)

By LemmaH.3, it holds thatM 2(� ) � N (�; F 1
h ; k � k1 ) � N [] (�; P; k � k1;1 ). Selecting a proper� = 1=K 2, we solve the

quadratic inequality (84) with respect toj[ED h � E� h ]gh ( bP)j. We obtain that (Uehara & Sun, 2021; Xie et al., 2021)

sup
h2 [H ]

sup
bP 2P Loc 2

h

j[ED h � E� h ]gh ( bP)j � C00log(N [] (1=K 2; P; k � k1;1 )H=� )=K

with probability at least1 � �=16, whereC00is an absolute constant. Hence we conclude the proof of LemmaG.9.

I. Useful Lemmas for Reproducing Kernel Hilbert Space

Lemma I.1 (Covering Number of RKHS Ball underk � k1 -Norm). Under AssumptionD.9, the covering number of RKHS
ball H R = f f 2 H : kf kH � Rg with radiousR underk � k1 -norm is bounded by

logN (�; H R ; k � k1 ) � C � log2(1=
 )=
 � log1+1 =
 (R=�):

whereC > 0 is an absolute constant.

Proof of LemmaI.1. See Lemma C.2. inCai et al.(2020b) for a detailed proof.

Lemma I.2 (Eluder Dimension: RKHS). Under AssumptionD.9, the eluder dimension of function classF with functions
upper bounded byM parameterized by RKHS ballH R with radiousR can be bounded by

dimE (F ; � ) � C � log2(1=
 )=
 � log1+1 =
 (RM=� ):

Proof of LemmaI.2. See Lemma C.1. inCai et al.(2020b) for a detailed proof.
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Lemma I.3 (RKHS Trancation Error with AssumptionD.9). LetC1 andC2 be the absolute constants in AssumptionD.9.
There exists an absolute constanteC such that for any
 2 (0; 1=2); t � 1, andR � 2, if we set

d0 =
l

eC � log(1=
 )=
 � log1=
 (tR )
m

;

then it holds thatd

0 � 4(1 � 
 ) ( 
C 2) � 1 and

"d0 :=
X

j>d 0

p
� j � R � C1=2

1 d1� 

0 R (
C 2) � 1 � exp (� C2d


0 =2) � 1=t:

Proof of LemmaI.3. See Lemma F.7. inCai et al.(2020b) for a detailed proof.


